TY - JOUR A1 - Lamoriniere, S. A1 - Mitchell, P. J. A1 - Ho, K. A1 - Kalinka, Gerhard A1 - Shaffer, M. S. P. A1 - Bismarck, A. T1 - Carbon nanotube enhanced carbon Fibre-Poly(ether ether ketone) interfaces in model hierarchical composites N2 - Poly (ether ether ketone) (PEEK) has a high continuous service temperature, excellent mechanical properties, and good solvent and abrasion resistance, which can be further improved through the addition of carbon nanotubes (CNTs). CNT-PEEK nanocomposites are promising matrices for continuous carbon fibre composites; powder processing can mitigate the high melt viscosities in these systems. In this study, model single fibre (hierarchical) composites were produced by embedding sized and desized carbon fibres in nanocomposite CNTPEEK powders followed by single fibre pull-out tests to assess interfacial characteristics. Carbon fibre-PEEK interfacial shear strength is typically 40–45 MPa. Increasing CNT loadings increased fibre-matrix interfacial shear strength linearly up to ~70 MPa at 5.0 wt%, which was attributed to the CNT-based mechanical modification of the PEEK matrix. Apparent interfacial shear strength was inversely correlated with the embedded fibre length irrespective of carbon fibre sizing or CNT loading, indicating brittle fracture of the fibre-matrix interface. Pulled out carbon fibres were still coated with the matrix, which indicated strong adhesion at the interface in all samples, likely related to a transcrystalline region. Adhesion was, however, negatively affected by the presence of epoxy sizings. Frictional shear strength was independent of embedded fibre length and CNT content for all samples. KW - Keywords: Poly(ether ether ketone) KW - Carbon fibres KW - Carbon nanotubes KW - Interfacial strength KW - Debonding PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550052 DO - https://doi.org/10.1016/j.compscitech.2022.109327 SN - 0266-3538 VL - 221 SP - 1 EP - 8 PB - Elsevier Ltd. CY - Niederlande AN - OPUS4-55005 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shimada, Y. A1 - Ikeda, Yuki A1 - Yoshida, K. A1 - Sato, M. A1 - Chen, J. A1 - Du, Y. A1 - Inoue, K. A1 - Maaß, Robert A1 - Nagai, Y. A1 - Konno, T. T1 - In situ thermal annealing transmission electron microscopy of irradiation induced Fe nanoparticle precipitation in Fe–Si alloy N2 - The typical experimental conditions inside a transmission electron microscope (TEM), such as ultra-high vacuum, high-energy electron irradiation, and surface effects of ultrathin TEM specimens, can be the origin of unexpected microstructural changes compared with that of bulk material during in situ thermal-annealing experiments. In this paper, we report on the microstructural changes of a Fe–15%Si alloy during in situ TEM annealing, where, in its bulk form, it exhibits an ordering transformation from D03 to B2 at 650 °C. Using a heating-pot type double tilt holder with a proportional–integral–differential control system, we observed the precipitation of α-Fe both at the sample surface and inside the sample. Surface precipitates formed via surface diffusion are markedly large, several tens of nm, whereas precipitates inside the specimen, which are surrounded by Fe-poor regions, reach a maximum size of 20 nm. This unexpected microstructural evolution could be attributed to vacancies on Si sites, which are induced due to high-energy electron irradiation before heating, as well as enhanced thermal diffusion of Fe atoms. KW - In situ thermal-annealing experiment KW - Microstructural changes of a Fe Si alloy KW - Microstructural evolution PY - 2022 DO - https://doi.org/10.1063/5.0070471 SN - 0021-8979 VL - 131 IS - 16 SP - 1 EP - 8 PB - AIP Publishing AN - OPUS4-54728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tielemann, Christopher A1 - Busch, R. A1 - Reinsch, Stefan A1 - Patzig, C. A1 - Höche, T. A1 - Avramov, I. A1 - Müller, Ralf T1 - Oriented surface nucleation in diopside glass N2 - Es wird die Texturbildung in kristallisierendem Diopsidglas im Zusammenhang mit der Oberflächenbeschaffenheit der unbehandelten Probe untersucht. Zudem wird der diskutiert, dass es sich bei der Texturbildung in Gläsern höchstwahrscheinlich um ein Nukleationsphänomen handelt welches auf die richtungsabhängige Grenzflächenenergie der kristallisierenden Phase zurückzuführen ist. N2 - Oriented surface crystallization on polished diopside glass surfaces has been studied with scanning electron microscopy, electron backscatter diffraction, transmission electron microscopy and laser scanning microscopy. An orientation preference of [001] parallel to the glass surface was detected for separately growing diopside crystals even as small as 700 nm in size. This finding shows that crystal orientation occurs in the outermost surface layer without crystal-crystal interaction and indicates that the crystal orientation is a result of oriented nucleation. Depending on surface preparation, monomodal crystal orientation distributions with [100] perpendicular to the surface or bimodal distributions with [100] and [010] perpendicular to the glass Surface were detected. It was also shown that the degree of crystal orientation increases with decreasing Surface roughness. The observed orientation of diopside crystals could be explained in terms of the interfacial energies of different crystal faces. KW - Surface energy KW - Glass ceramic KW - Glass KW - EBSD KW - Diopsid PY - 2021 UR - https://www.sciencedirect.com/science/article/pii/S002230932100020X DO - https://doi.org/10.1016/j.jnoncrysol.2021.120661 SN - 0022-3093 VL - 562 PB - Elsevier B.V. AN - OPUS4-53073 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Busch, R. A1 - Tielemann, Christopher A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Patzig, C. A1 - Krause, M. A1 - Höche, T. T1 - Sample preparation for analytical scanning electron microscopy using initial notch sectioning N2 - A novel method for broad ion beam based sample sectioning using the concept of initial notches is presented. An adapted sample geometry is utilized in order to create terraces with a well-define d step in erosion depth from the surface. The method consists of milling a notch into the surface, followed by glancing-angle ion beam erosion, which leads to preferential erosion at the notch due to increased local surface elevation. The process of terrace formation can be utilized in sample preparation for analytical scanning electron microscopy in order to get efficient access to the depth-dependent microstructure of a material. It is demonstrated that the method can be applied to both conducting and non-conducting specimens. Furthermore, experimental parameters influencing the preparation success are determined. Finally, as a proof-of-concept, an electron backscatter diffraction study on a surface crystallized diopside glass ceramic is performed, where the method is used to analyze orientation dependent crystal growth phenomena occurring during growth of surface crystals into the bulk. KW - 3D etching KW - Ion beam erosion Sectioning KW - EBSD KW - Sample preparation KW - Analytical scanning electron microscopy KW - SEM KW - Glass Ceramic KW - Glass KW - Diopsid PY - 2021 DO - https://doi.org/10.1016/j.micron.2021.103090 SN - 0968-4328 VL - 150 PB - Elsevier B.V. AN - OPUS4-53075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ikeda, Yuki A1 - Nishijima, M. A1 - Kiguchi, T. A1 - Konno, T. T1 - Crystal structure characterization of martensite of Cu–Zn–Al ternary alloy by spherical aberration corrected scanning transmission electron microscopy N2 - The crystal structure of martensite in Cu-27at.%Zn-9.0 at.%Al alloy has been studied by using sphericalaberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and geometrical phase analysis (GPA) to examine possible changes in atomic rearrangements during martensitic transformation of this ternary system. Observation along [100]M zone axis is suitable for examining a chemical order of the martensite, and showed that, despite the non-stoichiometry of the alloy, atomic columns containing Al atoms are imaged and distinguished from the others. On the other hand, observation along [010]M zone axis directly revealed that the parent and martensitic phases possess L21 and 18R (21) structures, respectively. These observations suggested that the martensite retained the local chemical order of the parent phase without shuffling before and after the transformation. GPA revealed that the interface between the two phases was coherent with tilting of the basal plane approximately 6◦ across the boundary, which makes otherwise large inclination small during the martensitic transformation. KW - Shape-memory alloys KW - Martensitic transformation KW - Martensitic structure KW - Electron microscopy, transmission PY - 2021 DO - https://doi.org/10.1016/j.intermet.2021.107286 SN - 0966-9795 VL - 137 PB - Elsevier Ltd. AN - OPUS4-53076 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Qu, R. A1 - Maaß, Robert A1 - Liu, Z. A1 - Tönnies, D. A1 - Tian, L. A1 - Ritchie, R. A1 - Zhang, Z. A1 - Volkert, A. T1 - Flaw-insentive fracture of a micrometer-sized brittle metallic glass N2 - Brittle materials, such as oxide glasses, are usually very sensitive to flaws, giving rise to a macroscopic fracture strength that is much lower than that predicted by theory. The same applies to metallic glasses (MGs), with the important difference that these glasses can exhibit certain plastic strain prior to catas- trophic failure. Here we consider the strongest metallic alloy known, a ternary Co 55 Ta 10 B 35 MG. We show that this macroscopically brittle glass is flaw-insensitive at the micrometer scale. This discovery emerges when testing pre-cracked specimens with self-similar geometries, where the fracture stress does not de- crease with increasing pre-crack size. The fracture toughness of this ultra-strong glassy alloy is further shown to increase with increasing sample size. Both these findings deviate from our classical under- standing of fracture mechanics, and are attributed to a transition from toughness-controlled to strength- controlled fracture below a critical sample size. KW - Metallic glass KW - Fracture toughness KW - Size effect KW - Small-scale PY - 2021 DO - https://doi.org/10.1016/j.actamat.2021.117219 VL - 218 PB - Elsevier Ltd. AN - OPUS4-53097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Ralf A1 - Behrens, Harald A1 - Ageo-Blanco, Boris A1 - Reinsch, Stefan A1 - Wirth, Thomas T1 - Foaming Species and Trapping Mechanisms in Barium Silicate Glass Sealants N2 - Barium silicate glass powders 4 h milled in CO2 and Ar and sintered in air are studied with microscopy, total carbon analysis, differential thermal Analysis (DTA), vacuum hot extraction mass spectroscopy (VHE-MS), Fourier-transformed infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary-ion mass spectrometry (TOF-SIMS). Intensive foaming of powder compacts is evident, and VHE studies prove that foaming is predominantly caused by carbonaceous species for both milling gases. DTA Shows that the decomposition of BaCO3 particles mix-milled with glass powders occurs at similar temperatures as foaming of compacts. However, no carbonate at the glass surface could be detected by FTIR spectroscopy, XPS, and TOF-SIMS after heating to the temperature of sintering. Instead, CO2 molecules unable to rotate identified by FTIR spectroscopy after milling, probably trapped by mechanical dissolution into the glass bulk. Such a mechanism or microencapsulation in cracks and particle aggregates can explain the contribution of Ar to foaming after intense milling in Ar atmosphere. The amount of CO2 molecules and Ar, however, cannot fully explain the extent of foaming. Carbonates mechanically dissolved beneath the surface or encapsulated in cracks and micropores of particle aggregates are therefore probably the major foaming source. KW - Milling KW - Foaming KW - Glass powder KW - Sintering PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531227 DO - https://doi.org/10.1002/adem.202100445 SN - 1438-1656 VL - 24 IS - 6 SP - 2100445-1 EP - 2100445-13 AN - OPUS4-53122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. I. A1 - Fedelich, Bernard A1 - Viguier, B. A1 - Schriever, Sina A1 - Svetlov, I. L. A1 - Petrushin, N. V. A1 - Saillard, R. A1 - Proietti, A. A1 - Poquillon, D. A1 - Chyrkin, A. T1 - Creep of single-crystals of nickel-base γ-alloy at temperatures between 1150 °C and 1288 °C N2 - A γ-analogue of the superalloy CMSX-4 that does not contain the strengthening γ′ -phase and only consists of the γ-solid solution of nickel has been designed, solidified as single-crystals of different orientations, and tested under creep conditions in the temperature range between 1150 and 1288 °C. The tests have revealed a very high creep anisotropy of this alloy, as was previously found for CMSX-4 at supersolvus temperature of 1288 °C. This creep anisotropy could be explained by the dominance of 〈011〉{111} octahedral slip. Furthermore, the analysis of the creep data has yielded a high value of the creep activation energy, Qc≈442 kJ/mol, which correlates with the high activation energy of Re diffusion in Ni. This supports the hypothesis that dislocation motion in the γ-matrix of Re-containing superalloys is controlled by the diffusion of the Re atoms segregating at the dislocation core. The Norton stress exponent n is close to 5, which is a typical value for pure metals and their alloys. The absence of γ′ -reprecipitation after high-temperature creep tests facilitates microstructural investigations. It has been shown by EBSD that creep deformation results in an increasing misorientation of the existing low angle boundaries. In addition, according to TEM, new low angle boundaries appear due to reactions of the a/2 〈011〉 mobile dislocations and knitting of new networks. KW - Nickel alloys KW - Single-crystals KW - Creep KW - Electron microscopy KW - Deformation mechanisms PY - 2021 DO - https://doi.org/10.1016/j.msea.2021.141880 SN - 0921-5093 VL - 825 SP - 1 EP - 13 PB - Elsevier CY - Amsterdam AN - OPUS4-53132 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hmood, F. J. A1 - Wilbig, Janka A1 - Nicolaides, Dagmar A1 - Zocca, Andrea A1 - Günster, Jens T1 - An approach to monitor the real-time deformation during heat treatment of 3D-printed glass N2 - This study suggests a tool for a better control on the sintering/crystallization of 3D-printed bioactive glassceramics bodies. A small cantilever in form of a bar with square cross section attached to a base and inclined 34◦ with the horizon, was used to monitor the viscous flow and sintering/crystallization headway of a glassceramic systems. 3D printing and sintering of bioactive glass-ceramics is of great interest for medical care applications. Viscous flow ensures sufficient densification of the typically low density printed green bodies, while crystallization prevents the structure from collapsing under the gravitational load. As a model system, a bioactive glass called BP1 (48.4 SiO2, 1 B2O3, 2 P2O5, 36.6 CaO, 6.6 K2O, 5.6 Na2O (mol%)), which has a chemical composition based on that of ICIE16, was employed in this work. In addition, ICIE16 was used as a reference glass. The results show that the suggested design is a very promising tool to track the real-time deformation of 3D printed glass-ceramic specimens and gives a good indication for the onset of crystallization as well. KW - Real-time deformation KW - Sintering KW - 3D-printing KW - Bioactive glass PY - 2021 DO - https://doi.org/10.1016/j.ceramint.2021.03.334 VL - 47 IS - 14 SP - 20045 EP - 20050 PB - Elsevier Ltd. AN - OPUS4-53449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Rouxel, T. A1 - Behrens, H. A1 - Deubener, J. A1 - Müller, Ralf T1 - Vacuum crack growth in alkali silicate glasses N2 - Crack growth velocity in alkali silicate glasses was measured in vacuum across 10 orders of magnitude with double cantilever beam technique. Measured and literature crack growth data were compared with calculated intrinsic fracture toughness data obtained from Young´s moduli and the theoretical fracture surface energy estimated from chemical bond energies. Data analysis reveals significant deviations from this intrinsic brittle fracture behavior. These deviations do not follow simple compositional trends. Two opposing processes may explain this finding: a decrease in the apparent fracture surface energy due to stress-induced chemical changes at the crack tip and its increase due to energy dissipation during fracture. KW - Silicate glass KW - Brittle fracture KW - Crack growth KW - Calculated intrinsic fracture toughness PY - 2021 DO - https://doi.org/10.1016/j.jnoncrysol.2021.121094 SN - 0022-3093 VL - 572 SP - 1 EP - 8 PB - Elsevier CY - Amsterdam AN - OPUS4-53144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -