TY - JOUR A1 - Wang, Zengquan A1 - Riechers, Birte A1 - Derlet, Peter M. A1 - Maaß, Robert T1 - Atomic cluster dynamics causes intermittent aging of metallic glasses JF - Acta Materialia N2 - In the past two decades, numerous relaxation or physical aging experiments of metallic glasses have revealed signatures of intermittent atomic-scale processes. Revealed via intensity cross-correlations from coherent scattering using X-ray photon correlation spectroscopy (XPCS), the observed abrupt changes in the time-domain of atomic motion does not fit the picture of gradual slowing down of relaxation times and their origin continues to remain unclear. Using a binary Lennard-Jones model glass subjected to microsecond-long isotherms, we show here that temporally and spatially heterogeneous atomic-cluster activity at different length-scales drive the emergence of highly non-monotonous intensity cross-correlations. The simulated XPCS experiments reveal a variety of time-dependent intensity-cross correlations that, depending on both the structural evolution and the 𝑞-space sampling, give detailed insights into the possible structural origins of intermittent aging measured with XPCS. KW - Metallic glasses KW - Aging KW - Molecular dynamics KW - XPCS PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595415 DO - https://doi.org/10.1016/j.actamat.2024.119730 SN - 1359-6454 VL - 267 SP - 1 EP - 9 PB - Elsevier B.V. CY - Amsterdam, Niederlande AN - OPUS4-59541 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tielemann, Christopher A1 - Reinsch, Stefan A1 - Maaß, Robert A1 - Deubener, J. A1 - Müller, Ralf T1 - Internal nucleation tendency and crystal surface energy obtained from bond energies and crystal lattice data JF - Journal of Non-Crystalline Solids: X N2 - We present an easy-to-apply method to predict structural trends in the internal nucleation tendency of oxide glasses. The approach is based on calculated crystal fracture surface energies derived from easily accessible diatomic bond energy and crystal lattice data. The applicability of the method is demonstrated on literature nucleation data for isochemically crystallizing oxide glasses. KW - Glass KW - Nucleation tendency KW - Fracture surface energy KW - Crystal lattice KW - Bond energy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548814 DO - https://doi.org/10.1016/j.nocx.2022.100093 SN - 2590-1591 VL - 14 SP - 1 EP - 5 PB - Elsevier B.V. AN - OPUS4-54881 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sänger, Johanna Christiane A1 - Pauw, Brian Richard A1 - Riechers, Birte A1 - Zocca, Andrea A1 - Rosalie, Julian A1 - Maaß, Robert A1 - Sturm, Heinz A1 - Günster, Jens T1 - Entering a new dimension in powder processing for advanced ceramics shaping JF - Advanced materials N2 - Filigree structures can be manufactured via two-photon-polymerization (2PP) operating in the regime of non-linear light absorption. For the first time it is possible to apply this technique to the powder processing of ceramic structures with a feature size in the range of the critical defect size responsible for brittle fracture and, thus, affecting fracture toughness of high-performance ceramics. In this way, tailoring of advanced properties can be achieved already in the shaping process. Traditionally, 2PP relies on transparent polymerizable resins, which is diametrically opposed to the usually completely opaque ceramic resins and slurries. Here we present a transparent and photocurable suspension of nanoparticles (resin) with very high mass fractions of yttria-stabilized zirconia particles (YSZ). Due to the extremely well dispersed nanoparticles, scattering of light can be effectively suppressed at the process-relevant wavelength of 800 nm. Sintered ceramic structures with a resolution of down to 500 nm were obtained. Even at reduced densities of 1 to 4 g/cm³, the resulting compressive strength with 4,5 GPa is equivalent or even exceeding bulk monolithic yttria stabilized zirconia. A ceramic metamaterial is born, where the mechanical properties of yttria stabilized zirconia are altered by changing geometrical parameters and gives access to a new class of ceramic materials. KW - Two-photon-polymerization KW - Ceramics KW - Powder processing KW - Transparency KW - Meta material KW - Yttria stabilized zirconia PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564598 DO - https://doi.org/10.1002/adma.202208653 SN - 1521-4095 SP - 1 EP - 8 PB - Wiley-VCH CY - Weinheim AN - OPUS4-56459 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stinville, J.C. A1 - Charpagne, M.A. A1 - Maaß, Robert A1 - Proudhon, H. A1 - Ludwig, W. A1 - Callahan, P.G. A1 - Wang, F. A1 - Beyerlein, I.J. A1 - Echlin, M.P. A1 - Pollock, T.M. T1 - Insights into Plastic Localization by Crystallographic Slip from Emerging Experimental and Numerical Approaches JF - Annual Review of Materials Research N2 - Advanced experimental and numerical approaches are being developed to capture the localization of plasticity at the nanometer scale as a function of the multiscale and heterogeneous microstructure present in metallic materials. These innovative approaches promise new avenues to understand microstructural effects on mechanical properties, accelerate alloy design, and enable more accurate mechanical property prediction. This article provides an overview of emerging approaches with a focus on the localization of plasticity by crystallographic slip. New insights into the mechanisms and mechanics of strain localization are addressed. The consequences of the localization of plasticity by deformation slip for mechanical properties of metallic materials are also detailed. KW - Slip localization KW - Metallic materials KW - Experimental and numerical techniques KW - Mechanical properties KW - Plasticity PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-578398 DO - https://doi.org/10.1146/annurev-matsci-080921-102621 SN - 1531-7331 VL - 53 SP - 275 EP - 317 AN - OPUS4-57839 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shimada, Y. A1 - Ikeda, Yuki A1 - Yoshida, K. A1 - Sato, M. A1 - Chen, J. A1 - Du, Y. A1 - Inoue, K. A1 - Maaß, Robert A1 - Nagai, Y. A1 - Konno, T. T1 - In situ thermal annealing transmission electron microscopy of irradiation induced Fe nanoparticle precipitation in Fe–Si alloy JF - Journal of Applied Physics N2 - The typical experimental conditions inside a transmission electron microscope (TEM), such as ultra-high vacuum, high-energy electron irradiation, and surface effects of ultrathin TEM specimens, can be the origin of unexpected microstructural changes compared with that of bulk material during in situ thermal-annealing experiments. In this paper, we report on the microstructural changes of a Fe–15%Si alloy during in situ TEM annealing, where, in its bulk form, it exhibits an ordering transformation from D03 to B2 at 650 °C. Using a heating-pot type double tilt holder with a proportional–integral–differential control system, we observed the precipitation of α-Fe both at the sample surface and inside the sample. Surface precipitates formed via surface diffusion are markedly large, several tens of nm, whereas precipitates inside the specimen, which are surrounded by Fe-poor regions, reach a maximum size of 20 nm. This unexpected microstructural evolution could be attributed to vacancies on Si sites, which are induced due to high-energy electron irradiation before heating, as well as enhanced thermal diffusion of Fe atoms. KW - In situ thermal-annealing experiment KW - Microstructural changes of a Fe Si alloy KW - Microstructural evolution PY - 2022 DO - https://doi.org/10.1063/5.0070471 SN - 0021-8979 VL - 131 IS - 16 SP - 1 EP - 8 PB - AIP Publishing AN - OPUS4-54728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rizzardi, Q. A1 - McElfresh, C. A1 - Sparks, G. A1 - Stauffer, D. A1 - Marian, J. A1 - Maaß, Robert T1 - Mild-to-wild plastic transition is governed by athermal screw dislocation slip in bcc Nb JF - Nature Communications N2 - Plastic deformation in crystals is mediated by the motion of line defects known as dislocations. For decades, dislocation activity has been treated as a homogeneous, smooth continuous process. However, it is now recognized that plasticity can be determined by longrange correlated and intermittent collective dislocation processes, known as avalanches. Here we demonstrate in body-centered cubic Nb how the long-range and scale-free dynamics at room temperature are progressively quenched out with decreasing temperature, eventually revealing intermittency with a characteristic length scale that approaches the Burgers Vector itself. Plasticity is shown to be bimodal across the studied temperature regime, with conventional thermally-activated smooth plastic flow (‘mild’) coexisting with sporadic Bursts (‘wild’) controlled by athermal screw dislocation activity, thereby violating the classical Notion of temperature-dependent screw dislocation motion at low temperatures. An abrupt increase of the athermal avalanche component is identified at the critical temperature of the material. Our results indicate that plasticity at any scale can be understood in terms of the coexistence of these mild and wild modes of deformation, which could help design better alloys by suppressing one of the two modes in desired temperature Windows. KW - Plastic deformation KW - Microplastic stress KW - Intermittent microplasticity PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543927 DO - https://doi.org/10.1038/s41467-022-28477-4 VL - 13 IS - 1 SP - 1 EP - 9 PB - Nature AN - OPUS4-54392 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rizzardi, Q. A1 - Derlet, P. M. A1 - Maaß, Robert T1 - Intermittent microplasticity in the presence of a complex microstructure JF - Physical materials review N2 - We demonstrate the gradual shift from scale-free intermittent microplasticity to a scale-dependent behavior via the introduction of a variety of microstructural features within the Al-Cu binary alloy system. As long as the obstacles to dislocation motion remain shearable, the statistics of intermittent microplasticity has fat-tailed contributions. The introduction of incoherent precipitates leads to a complete transition from scale-free powerlaw scaling to an exponential and scale-dependent distribution. These results demonstrate how non-Gaussian interactions survive across different microstructures and further suggest that characteristic microstructural length scales and obstacle pinning-strengths are of secondary importance for the intermittency statistics, as long as dislocations can shear their local environment. KW - Scale-dependent behavior KW - Al-Cu binary alloy system PY - 2022 DO - https://doi.org/10.1103/PhysRevMaterials.6.073602 SN - 2475-9953 VL - 6 IS - 7 SP - 1 EP - 9 PB - American Physical Society AN - OPUS4-55387 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rizzardi, Q. A1 - Derlet, P. M. A1 - Maaß, Robert T1 - Microstructural signatures of dislocation avalanches in a high-entropy alloy JF - Physical review materials N2 - Here, we trace in situ the slip-line formation and morphological signature of dislocation avalanches in a highentropy alloy with the aim of revealing their microstructural degree of localization. Correlating the intermittent microplastic events with their corresponding slip-line patterns allows defining two main event types, one of which is linked to the formation of new slip lines, whereas the other one involves reactivation of already existing slip lines. The formation of new slip lines reveals statistically larger and faster avalanches. The opposite tendency is seen for avalanches involving reactivation of already existing slip lines. The combination of both these types of events represents the highest degree of spatial avalanche delocalization that spans the entire sample, forming a group of events that determine the truncation length scale of the truncated power-law scaling. These observations link the statistics of dislocation avalanches to a microstructural observable. KW - High-entropy alloy KW - Dislocation avalanches PY - 2021 DO - https://doi.org/10.1103/PhysRevMaterials.5.043604 SN - 2475-9953 VL - 5 IS - 4 SP - 3604 PB - American Physical Society CY - College Park, MD AN - OPUS4-52458 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Riechers, Birte A1 - Ott, C. A1 - Das, S. M. A1 - Liebscher, C. A1 - Samwer, K. A1 - Derlet, P. M. A1 - Maaß, Robert T1 - On the elastic microstructure of bulk metallic glasses JF - Materials & Design N2 - Metallic glasses (MGs) are known to be structurally heterogeneous at the nanometer (nm) scale. In addition, elastic property mapping has indicated the presence of at least an order-of-magnitude larger length scales, of which the origin continues to remain unknown. Here we demonstrate the existence of an elastic decorrelation length of the order of 100 nm in a Zr-based bulk MG using spatially resolved elastic property mapping via nanoindentation. Since compositional modulations sufficiently large to account for this elastic microstructure were not resolved by analytical scanning-transmission electron microscopy, chemical phase separation such as spinodal decomposition cannot explain their occurrence as previously suggested. Instead, we argue that the revealed long-range elastic modulations stem from structural variations affecting the local density. These emerge during solidification and are strongly influenced by the cooling constraints imposed on bulk MGs during the casting process. KW - Metallic glasses KW - Nanoindentation KW - Elastic microstructure PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573504 DO - https://doi.org/10.1016/j.matdes.2023.111929 SN - 0264-1275 VL - 229 SP - 1 EP - 8 PB - Elsevier Ltd. CY - Amsterdam, Niederlande AN - OPUS4-57350 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Qu, R. A1 - Maaß, Robert A1 - Liu, Z. A1 - Tönnies, D. A1 - Tian, L. A1 - Ritchie, R. A1 - Zhang, Z. A1 - Volkert, A. T1 - Flaw-insentive fracture of a micrometer-sized brittle metallic glass JF - Acta Materialia N2 - Brittle materials, such as oxide glasses, are usually very sensitive to flaws, giving rise to a macroscopic fracture strength that is much lower than that predicted by theory. The same applies to metallic glasses (MGs), with the important difference that these glasses can exhibit certain plastic strain prior to catas- trophic failure. Here we consider the strongest metallic alloy known, a ternary Co 55 Ta 10 B 35 MG. We show that this macroscopically brittle glass is flaw-insensitive at the micrometer scale. This discovery emerges when testing pre-cracked specimens with self-similar geometries, where the fracture stress does not de- crease with increasing pre-crack size. The fracture toughness of this ultra-strong glassy alloy is further shown to increase with increasing sample size. Both these findings deviate from our classical under- standing of fracture mechanics, and are attributed to a transition from toughness-controlled to strength- controlled fracture below a critical sample size. KW - Metallic glass KW - Fracture toughness KW - Size effect KW - Small-scale PY - 2021 DO - https://doi.org/10.1016/j.actamat.2021.117219 VL - 218 PB - Elsevier Ltd. AN - OPUS4-53097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -