TY - JOUR A1 - Pinomaa, T. A1 - Lindroos, M. A1 - Jreidini, P. A1 - Haapalehto, M. A1 - Ammar, K. A1 - Wang, Lei A1 - Forest, S. A1 - Provatas, N. A1 - Laukkanen, A. T1 - Multiscale analysis of crystalline defect formation in rapid solidification of pure aluminium and aluminium-copper alloys N2 - Rapid solidification leads to unique microstructural features, where a less studied topic is the formation of various crystalline defects, including high dislocation densities, as well as gradients and splitting of the crystalline orientation. As these defects critically affect the material’s mechanical properties and performance features, it is important to understand the defect formation mechanisms, and how they depend on the solidification conditions and alloying. To illuminate the formation mechanisms of the rapid solidification induced crystalline defects, we conduct a multiscale modelling analysis consisting of bond-order potential-based molecular dynamics (MD), phase field crystal-based amplitude expansion simulations, and sequentially coupled phase field–crystal plasticity simulations. The resulting dislocation densities are quantified and compared to past experiments. The atomistic approaches (MD, PFC) can be used to calibrate continuum level crystal plasticity models, and the framework adds mechanistic insights arising from the multiscale analysis. This article is part of the theme issue ‘Transport phenomena in complex systems (part 2)’. KW - Rapid solidification KW - Crystalline defects KW - Molecular dynamics KW - Phase field crystal KW - Phase field method KW - Crystal plasticity PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-542156 SN - 1364-503X VL - 380 IS - 2217 SP - 1 EP - 20 PB - Royal Society CY - London AN - OPUS4-54215 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kianinejad, kaveh A1 - Fedelich, Bernard A1 - Darvishi Kamachali, Reza A1 - Schriever, Sina A1 - Manzoni, Anna Maria A1 - Agudo Jacome, Leonardo A1 - Megahed, Sandra A1 - Kamrani, Sepideh A1 - Saliwan-Neumann, Romeo T1 - Experimentally informed multiscale creep modelling of additive manufactured Ni-based superalloys N2 - Excellent creep resistance at elevated temperatures, i.e. T / T_m> 0.5, due to γ-γ’ microstructure is one of the main properties of nickel-based superalloys. Due to its great importance for industrial applications, a remarkable amount of research has been devoted to understanding the underlying deformation mechanism in a wide spectrum of temperature and loading conditions. Additive manufactured (AM) nickel-based superalloys while being governed by similar γ-γ’ microstructure, exhibit AM-process specific microstructural characteristics, such as columnar grains, strong crystallographic texture (typically <001> fiber texture parallel to build direction) and compositional inhomogeneity, which in turn leads to anisotropic creep response in both stationary and tertiary phases. Despite the deep insights achieved recently on the correlation between process parameters and the resulting microstructure, the anisotropic creep behavior and corresponding deformation mechanism of these materials are insufficiently understood so far. One reason for this is the lack of capable material models that can link the microstructure to the mechanical behavior. To overcome this challenge, a multiscale microstructure-based approach has been applied by coupling crystal plasticity (CP) and polycrystal model which enables the inclusion of different deformation mechanisms and microstructural characteristics such as crystallographic texture and grain morphology. The method has been applied to experimental data for AM-manufactured INCONEL-738LC (IN738). The effect of different slip systems, texture, and morphology on creep anisotropy at 850°C has been investigated. Results suggest a strong correlation between superlattice extrinsic stacking fault (SESF) and microtwinning and observed creep anisotropy. T2 - EUROMAT 23 CY - Frankfurt a. M., Germany DA - 04.09.2023 KW - IN738LC KW - Creep anisotropy KW - Crystal plasticity PY - 2023 AN - OPUS4-58263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kianinejad, Kaveh A1 - Darvishi Kamachali, Reza A1 - Khedkar, Abhinav A1 - Manzoni, Anna A1 - Agudo Jácome, Leonardo A1 - Schriever, Sina A1 - Saliwan Neumann, romeo A1 - Megahed, Sandra A1 - Heinze, Christoph A1 - Kamrani, Sepideh A1 - Fedelich, Bernard T1 - Creep anisotropy of additively manufactured Inconel-738LC: Combined experiments and microstructure-based modeling N2 - The current lack of quantitative knowledge on processing-microstructure–property relationships is one of the major bottlenecks in today’s rapidly expanding field of additive manufacturing. This is centrally rooted in the nature of the processing, leading to complex microstructural features. Experimentally-guided modeling can offer reliable solutions for the safe application of additively manufactured materials. In this work, we combine a set of systematic experiments and modeling to address creep anisotropy and its correlation with microstructural characteristics in laser-based powder bed fusion (PBF-LB/M) additively manufactured Inconel-738LC (IN738LC). Three sample orientations (with the tensile axis parallel, perpendicular, and 45° tilted, relative to the building direction) are crept at 850 °C, accompanied by electron backscatter secondary diffraction (EBSD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) investigations. A crystal plasticity (CP) model for Ni-base superalloys, capable of modeling different types of slip systems, is developed and combined with various polycrystalline representative volume elements (RVEs) built on the experimental measurements. Besides our experiments, we verify our modeling framework on electron beam powder bed fusion (PBF-EB/M) additively manufactured Inconel-738LC. The results of our simulations show that while the crystallographic texture alone cannot explain the observed creep anisotropy, the superlattice extrinsic stacking faults (SESF) and related microtwinning slip systems play major roles as active deformation mechanisms. We confirm this using TEM investigations, revealing evidence of SESFs in crept specimens. We also show that the elongated grain morphology can result in higher creep rates, especially in the specimens with a tilted tensile axis. KW - Additive manufactured Ni-base superalloys KW - Creep KW - Crystal plasticity KW - Superlattice extrinsic stacking faults PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-601576 SN - 0921-5093 VL - 907 SP - 1 EP - 16 PB - Elsevier B.V. AN - OPUS4-60157 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falkenberg, Rainer A1 - Charmi, Amir T1 - Virtual-lab-based determination of a macroscopic yield function for additively manufactured parts N2 - Diese Arbeit beschreibt eine Methode für die Ermittlung einer Fließfunktion für additiv gefertigte Bauteile des Werkstoffs S316L. Ein Kristallplastizitätsmodell wird zunächst mit experimentellen Daten kalibriert. Anschließend werden mit diesem Modell sogenannte virtuelle Experimente durchgeführt, die die prozeßspezifische Mikrostruktur in Form von kristallographischen und morphologischen Texturen miteinbeziehen. Diese Simulationen werden mit einem representativen Volumenelement (RVE) durchgeführt, das aus EBSD/CT-Scans an additiv gefertigten Proben generiert wurde und daher die Kornstruktur und Kristallorientierungen enthält. Die virtuellen Experimente werden durchgeführt, um anhand der damit erhaltenen Fließpunkte eine anisotrope Barlat-Fließfunktion zu bestimmen. Dieser skalenübergreifende Ansatz ermöglicht die Simulation großer Strukturen, für die die Anwendung eines Kristallplastizitätsmodells numerisch zu teuer wäre. N2 - This work presents a method for the yield function determination of additively manufactured parts of S316L steel. A crystal plasticity model is calibrated with test results and used afterwards to perform so-called virtual experiments, that account for the specific process-related microstructure including crystallographic and morphological textures. These simulations are undertaken on a representative volume element (RVE), that is generated from EBSD/CT-Scans on in-house additively manufactured specimen, considering grain structure and crystal orientations. The results of the virtual experiments are used to determine an anisotropic Barlat yield function, that can be used in a macroscopical continuum-sense afterwards. This scale-bridging approach enables the calculation of large-scale parts, that would be numerically too expensive to be simulated by a crystal plasticity model. T2 - 3. Tagung des DVM-Arbeitskreises Additiv gefertigte Bauteile und Strukturen CY - Berlin, Germany DA - 07.11.2018 KW - Additive manufacturing KW - Scale-bridging KW - Crystal plasticity KW - Virtual experiments KW - Anisotropy PY - 2018 SN - 2509-8772 SP - 153 EP - 158 PB - DVM CY - Berlin AN - OPUS4-46570 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falkenberg, Rainer A1 - Charmi, Amir T1 - Virtual-lab-based determination of a macroscopic yield function for additively manufactured parts N2 - This work presents a method for the yield function determination of additively manufactured parts of S316L steel. A crystal plasticity model is calibrated with test results and used afterwards to perform so-called virtual experiments, that account for the specific process-related microstructure including crystallographic and morphological textures. These simulations are undertaken on a representative volume element (RVE), that is generated from EBSD/CT-Scans on in-house additively manufactured specimen, considering grain structure and crystal orientations. The results of the virtual experiments are used to determine an anisotropic Barlat yield function, that can be used in a macroscopical continuum-sense afterwards. This scale-bridging approach enables the calculation of large-scale parts, that would be numerically too expensive to be simulated by a crystal plasticity model. T2 - 3. Tagung des DVM-Arbeitskreises Additiv gefertigte Bauteile und Strukturen CY - Berlin, Germany DA - 07.11.2018 KW - Virtual experiments KW - Additive manufacturing KW - Anisotropy KW - Crystal plasticity KW - Scale-bridging PY - 2018 AN - OPUS4-46895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Charmi, Amir A1 - Falkenberg, Rainer A1 - Ávila, Luis A1 - Mohr, Gunther A1 - Sommer, Konstantin A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Saliwan Neumann, Romeo A1 - Evans, Alexander A1 - Skrotzki, Birgit T1 - Mechanical anisotropy of additively manufactured stainless steel 316L: An experimental and numerical study N2 - The underlying cause of mechanical anisotropy in additively manufactured (AM) parts is not yet fully understood and has been attributed to several different factors like microstructural defects, residual stresses, melt pool boundaries, crystallographic and morphological textures. To better understand the main contributing factor to the mechanical anisotropy of AM stainless steel 316L, bulk specimens were fabricated via laser powder bed fusion (LPBF). Tensile specimens were machined from these AM bulk materials for three different inclinations: 0◦, 45◦, and 90◦ relative to the build plate. Dynamic Young’s modulus measurements and tensile tests were used to determine the mechanical anisotropy. Some tensile specimens were also subjected to residual stress measurement via neutron diffraction, porosity determination with X-ray micro-computed tomography (μCT), and texture analysis with electron backscatter diffraction (EBSD). These investigations revealed that the specimens exhibited near full density and the detected defects were spherical. Furthermore, the residual stresses in the loading direction were between −74 ± 24 MPa and 137 ± 20 MPa, and the EBSD measurements showed a preferential ⟨110⟩ orientation parallel to the build direction. A crystal plasticity model was used to analyze the elastic anisotropy and the anisotropic yield behavior of the AM specimens, and it was able to capture and predict the experimental behavior accurately. Overall, it was shown that the mechanical anisotropy of the tested specimens was mainly influenced by the crystallographic texture. KW - Mechanical anisotropy KW - Residual stress KW - Crystal plasticity KW - Selective laser melting (SLM) KW - Laser beam melting (LBM) PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-511719 SN - 0921-5093 VL - 799 SP - 140154 PB - Elsevier B.V. AN - OPUS4-51171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Charmi, Amir T1 - Mechanical anisotropy of LPBF 316L: a modeling approach N2 - The underlying cause of mechanical anisotropy in additively manufactured (AM) parts is not yet fully understood and has been attributed to several different factors like microstructural defects, residual stresses, melt pool boundaries, crystallographic and morphological textures. To better understand the main contributing factor to the mechanical anisotropy of AM stainless steel 316L, bulk specimens were fabricated via laser powder bed fusion (LPBF). Tensile specimens were machined from these AM bulk materials for three different inclinations relative to the build plate. Dynamic Young's modulus measurements and tensile tests were used to determine the mechanical anisotropy. Some tensile specimens were also subjected to residual stress measurement via neutron diffraction, porosity determination with X-ray micro-computed tomography, and texture analysis with electron backscatter diffraction (EBSD). A crystal plasticity model was used to analyze the elastic anisotropy and the anisotropic yield behavior of the AM specimens, and it was able to capture and predict the experimental behavior accurately. Overall, it was shown that the mechanical anisotropy of the tested specimens was mainly influenced by the crystallographic texture. T2 - 2. Online-Workshop "In-situ Monitoring and Microstructure Development in Additive Manufactured Alloys " CY - Online meeting DA - 20.04.2021 KW - Anisotropy KW - Crystal plasticity KW - Additive manufacturing PY - 2021 AN - OPUS4-52603 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Charmi, Amir A1 - Falkenberg, Rainer A1 - Skrotzki, Birgit T1 - Virtual-lab-based determination of a macroscopic yield function for additively manufactured parts N2 - This work aims for a yield function description of additively manufactured parts of S316L steel at the continuum-mechanical macro-scale by means of so-called virtual experiments using a crystal plasticity (CP) model at meso-scale. Additively manufactured parts require the consideration of the specific process-related microstructure, which prevents this material to be macroscopically treated as isotropic, because of crystallographic as well as topological textures. From virtual experiments, yield loci under various loading conditions are simulated. The scale bridging from meso- to macro-scale is realised by the identification of the simulated yield loci as a modified anisotropic Barlat-type yield model representation. T2 - Workshop on Additive Manufacturing, BAM CY - Berlin, Germany DA - 13.05.2019 KW - Virtual experiments KW - Additive manufacturing KW - Anisotropy KW - Crystal plasticity KW - Scale-bridging PY - 2019 AN - OPUS4-48064 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Charmi, Amir A1 - Falkenberg, Rainer A1 - Skrotzki, Birgit A1 - Ávila, Luis A1 - Sommer, Konstantin T1 - Virtual-lab-based determination of a macroscopic yield function for additively manufactured parts N2 - This work aims for an yield function description of additively manufactured (AM) parts of S316L steel at the continuum-mechanical macro-scale by means of so-called virtual experiments using a crystal plasticity (CP) model at meso-scale. Additively manufactured parts require the consideration of the specific process-related microstructure, which prevents this material to be macroscopically treated as isotropic, because of crystallographic as well as topological textures. EBSD/CT-Scans from in-house additively manufactured specimen extract the unique microstructural topology which is converted to a representative volume element (RVE) with grain structure and crystal orientations. Crystal plasticity model parameters on this RVE are calibrated and validated by means of mechanical testing under different texture angles. From virtual experiments on this RVE, yield loci under various loading conditions are simulated. The scale bridging from meso- to macro-scale is realised by the identification of the simulated yield loci as a modified anisotropic Barlat-type yield model representation. T2 - The First European Conference on Structural Integrity of Additively Manufactured Materials (ESIAM19) CY - Trondheim, Norway DA - 09.09.2019 KW - Virtual experiments KW - Additive manufacturing KW - Anisotropy KW - Crystal plasticity KW - Scale-bridging PY - 2019 AN - OPUS4-49376 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Charmi, Amir T1 - Mechanical anisotropy of additively manufactured stainless steel 316l: an experimental and numerical study N2 - This work aims for a yield function description of additively manufactured (AM) parts of stainless steel 316L at the continuum-mechanical macro-scale by means of so-called virtual experiments using a crystal plasticity model at meso-scale. T2 - 1st Workshop on In-situ Monitoring and Microstructure Development in Additive Manufacturing CY - BAM, Berlin DA - 10.12.2020 KW - Anisotropy KW - Crystal plasticity KW - Additive manufacturing PY - 2020 AN - OPUS4-51941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -