TY - JOUR A1 - Gesell, Stephan A1 - Ganesh, R. A1 - Fedelich, Bernard A1 - Kuna, M. A1 - Kiefer, B. T1 - Numerical calculation of đ›„CTOD to simulate fatigue crack growth under large scale viscoplastic deformations N2 - Crack propagation under low cycle fatigue and thermomechanical fatigue is characterized by high plastic and creep strains that extend over large regions around the crack, so that concepts of linear-elastic fracture mechanics cannot be applied. In these cases, the cyclic crack tip opening displacement đ›„CTOD is a promising loading parameter to quantify crack growth. In this work, suitable definitions and Finite Element techniques are investigated and compared for an accurate calculation of đ›„CTOD under cyclic mechanical and/or thermal loading. A viscoplastic temperature dependent material model of Chaboche-type is used along with large strain settings, specified for the austenitic cast iron Ni-resist. Extensive two-dimensional analyses of Single Edge Notch Tension specimens revealed that collapsed special crack tip elements are superior compared with commonly used regular quadrilateral 8-node elements. At the same level of accuracy of đ›„CTOD, they require an about ten times coarser mesh and show less sensitivity w.r.t. element size for both stationary and propagating cracks. In order to simulate fatigue crack growth, an efficient, fully automated FE-technique is developed for an incremental crack propagation by successive remeshing, whereby the deformations and internal state variables are mapped from the old mesh onto the new one. Recommendations are made regarding important numerical control parameters like optimal size of crack tip elements, length of crack growth increment in relation to plastic zone size and đ›„CTOD value. KW - Crack tip opening displacement KW - Finite element analysis KW - Crack growth KW - Low cycle fatigue PY - 2023 DO - https://doi.org/10.1016/j.engfracmech.2023.109064 VL - 281 IS - 109064 SP - 1 EP - 23 PB - Elsevier Ltd. AN - OPUS4-56857 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Treninkov, I. A. A1 - Petrushin, N. V. A1 - Epishin, A. I. A1 - Svetlov, I. L. A1 - Nolze, Gert A1 - Elyutin, E. S. T1 - Experimental Determination of Temperature Dependence of Structural–Phase Parameters of Nickel-Based Superalloy N2 - The temperature dependences of the periods of the crystal lattices of the Îł and Îł' phases, their dimensional mismatch (misfit), and volume fraction of the Îł' phase of an experimental single-crystal hightemperature nickel-based alloy have been determined by X-ray diffraction analysis in the temperature range of 18–1150°C. The temperature ranges in which intense changes in the structural and phase characteristics of the alloy under study take place have been determined. KW - X-ray diffraction analysis KW - High temperatures KW - Nickel-based superalloys KW - Single crystal KW - Crystal lattice period PY - 2022 DO - https://doi.org/10.1134/s2075113322010373 SN - 2075-1133 VL - 13 IS - 1 SP - 171 EP - 178 PB - Springer Science + Business Media CY - Dordrecht AN - OPUS4-54466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ávila CalderĂłn, Luis Alexander A1 - Graf, B. A1 - Rehmer, Birgit A1 - Petrat, T. A1 - Skrotzki, Birgit A1 - Rethmeier, Michael T1 - Characterization of Ti-6Al-4V fabricated by multilayer laser powder-based directed energy deposition N2 - Laser powder-based directed energy deposition (DED-L) is increasingly being used in additive manufacturing (AM). As AM technology, DED-L must consider specific challenges. It must achieve uniform volume growth over hundreds of layers and avoid heat buildup of the deposited material. Herein, Ti–6Al–4V is fabricated using an approach that addresses these challenges and is relevant in terms of transferability to DED–L applications in AM. The assessment of the obtained properties and the discussion of their relationship to the process conditions and resulting microstructure are presented. The quality of the manufacturing process is proven in terms of the reproducibility of properties between individual blanks and with respect to the building height. The characterization demonstrates that excellent mechanical properties are achieved at room temperature and at 400 °C. KW - AGIL KW - Laser powder-based directed energy deposition KW - Tensile properties KW - Ti-6Al-4V KW - Microstructure PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542262 DO - https://doi.org/10.1002/adem.202101333 SN - 1438-1656 SN - 1527-2648 SP - 1 EP - 15 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54226 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Feldmann, Titus A1 - Fedelich, Bernard A1 - Epishin, A. T1 - Simulation of Hot Isostatic Pressing in a Single-Crystal Ni Base Superalloy with the Theory of Continuously Distributed Dislocations Combined with Vacancy Diffusion N2 - Single-crystal components made of nickel base superalloys contain pores after casting and homogenization heat treatment. Hot isostatic pressing (HIP), which is carried above the Îł' -solvus temperature of the alloy, is industrially applied to reduce porosity. A modeling of HIP based on continuously distributed dislocations is developed in a 2D setting. Glide and climb of straight-edge dislocations, as well as vacancy diffusion, are the deformation mechanisms taken into account. Thereby, dislocation glide is controlled by dragging a cloud of large atoms, and climb is controlled by vacancy diffusion. Relying on previous investigations of the creep behavior at HIP temperatures, it is assumed that new dislocations are nucleated at low-angle boundaries (LAB) and move through subgrains until they either reach the opposite LABs or react with other dislocations and annihilate. Vacancies are created at the pore surface and diffuse through the alloy until they are either consumed by climbing dislocations or disappear at the LABs. The field equations are solved by finite elements. It is shown that pore shrinking is mostly controlled by vacancy diffusion as the shear stresses at the LABs are too low to nucleate a sufficient amount of dislocations. KW - Nickel-base superalloys KW - HIP KW - Dislocation KW - Creep KW - Model PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542309 DO - https://doi.org/10.1002/adem.202101341 VL - 2022 PB - Wiley AN - OPUS4-54230 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, J. A1 - Farris, L. A1 - Nolze, Gert A1 - Reinsch, Stefan A1 - Cios, G. A1 - Tokarski, T. A1 - Thompson, S. T1 - Microstructure evolution in Inconel 718 produced by powder bed fusion additive manufacturing N2 - Inconel 718 is a precipitation strengthened, nickel-based super alloy of interest for the Additive Manufacturing (AM) of low volume, complex parts to reduce production time and cost compared to conventional subtractive processes. The AM process involves repeated rapid melting, solidification and reheating, which exposes the material to non-equilibrium conditions that affect elemental segregation and the subsequent formation of solidification phases, either beneficial or detrimental. These variations are difficult to characterize due to the small length scale within the micron sized melt pool. To understand how the non-equilibrium conditions affect the initial solidification phases and their critical temperatures, a multi-length scale, multi modal approach has been taken to evaluate various methods for identifying the initial phases formed in the as-built Inconel 718 produced by laser-powder bed fusion (L-PBF) additive manufacturing (AM). Using a range of characterization tools from the bulk differential thermal analysis (DTA) and x-ray diffraction (XRD) to spatially resolved images using a variety of electron microscopy tools, a better understanding is obtained of how these minor phases can be properly identified regarding the amount and size, morphology and distribution. Using the most promising characterization techniques for investigation of the as-built specimens, those techniques were used to evaluate the specimens after various heat treatments. During the sequence of heat treatments, the initial as-built dendritic structures recrystallized into well-defined grains whose size was dependent on the temperature. Although the resulting strength was similar in all heat treated specimens, the elongation increased as the grain size was refined due to differences in the precipitated phase distribution and morphology. KW - Metal additive manufacturing KW - Inconel 718 KW - Heat treatment KW - Grain boundary precipitates KW - Laves phase PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542758 DO - https://doi.org/10.3390/jmmp6010020 SN - 2504-4494 VL - 6 IS - 1 SP - 1 EP - 20 PB - MDPI CY - Basel AN - OPUS4-54275 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhou, X. A1 - Wei, Y. A1 - KĂŒhbach, M. A1 - Zhao, H. A1 - Vogel, F. A1 - Darvishi Kamachali, Reza A1 - Thompson, G. B. A1 - Raabe, D. A1 - Gault, B. T1 - Revealing in-plane grain boundary composition features through machine learning from atom probe tomography data N2 - Grain boundaries (GBs) are planar lattice defects that govern the properties of many types of polycrystalline materials. Hence, their structures have been investigated in great detail. However, much less is known about their chemical features, owing to the experimental difficulties to probe these features at the atomic length scale inside bulk material specimens. Atom probe tomography (APT) is a tool capable of accomplishing this task, with an ability to quantify chemical characteristics at near-atomic scale. Using APT data sets, we present here a machine-learning-based approach for the automated quantification of chemical features of GBs. We trained a convolutional neural network (CNN) using twenty thousand synthesized images of grain interiors, GBs, or triple junctions. Such a trained CNN automatically detects the locations of GBs from APT data. Those GBs are then subjected to compositional mapping and analysis, including revealing their in-plane chemical decoration patterns. We applied this approach to experimentally obtained APT data sets pertaining to three case studies, namely, Ni-P, Pt-Au, and Al-Zn-Mg-Cu alloys. In the first case, we extracted GB specific segregation features as a function of misorientation and coincidence site lattice character. Secondly, we revealed interfacial excesses and in-plane chemical features that could not have been found by standard compositional analyses. Lastly, we tracked the temporal evolution of chemical decoration from early-stage solute GB segregation in the dilute limit to interfacial phase separation, characterized by the evolution of complex composition patterns. This machine-learning-based approach provides quantitative, unbiased, and automated access to GB chemical analyses, serving as an enabling tool for new discoveries related to interface thermodynamics, kinetics, and the associated chemistry-structure-property relations. KW - Machine learning KW - Digitalization KW - Alloy microstructure PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543049 DO - https://doi.org/10.1016/j.actamat.2022.117633 SN - 1359-6454 VL - 226 SP - 1 EP - 15 PB - Elsevier CY - Amsterdam AN - OPUS4-54304 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kingsbery, Phillip A1 - Stephan-Scherb, Christiane T1 - Effect of KCl deposits in high‐temperature corrosion on chromium‐rich steels in SO2‐containing atmosphere N2 - High‐temperature corrosion was studied under multiple chemical loads on ferritic‐austenitic model alloys (Fe–13Cr, Fe–18Cr–12Ni, and Fe‐25Cr–20Ni) with KCl deposit under 0.5% SO2/99.5% Ar gas atmosphere at 560°C. Postexposure characterization was done by X‐ray diffraction and scanning electron microscopy. In a pure SO2/Ar environment a protective Cr2O3 scale was formed by all samples. The introduction of KCl deposits causes the scale to be nonprotective and multilayered, consisting of CrS, FeS, Cr2O3, Fe3O4, and Fe2O3. The impact of the microstructure and alloying elements is discussed. KW - High‐temperature corrosion KW - KCl KW - Microstructure KW - SO2 KW - Steel alloy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543056 DO - https://doi.org/10.1002/maco.202112901 VL - 73 IS - 5 SP - 758 EP - 770 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54305 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - RĂŒtters, H. A1 - Fischer, S. A1 - Le, Quynh Hoa A1 - Bettge, Dirk A1 - BĂ€ĂŸler, Ralph A1 - Maßmann, J. A1 - Ostertag-Henning, C. A1 - Wolf, J. L. A1 - Pumpa, M. A1 - Lubenau, U. A1 - Knauer, S. A1 - Jaeger, P. A1 - Neumann, A. A1 - Svensson, K. A1 - Pöllmann, H. A1 - Lempp, C. A1 - Menezes, F. F. A1 - Hagemann, B. T1 - Towards defining reasonable minimum composition thresholds – Impacts of variable CO2 stream compositions on transport, injection and storage N2 - To set up recommendations on how to define “reasonable minimum composition thresholds” for CO2 streams to access CO2 pipeline networks, we investigated potential impacts of CO2 streams with different and temporally variable compositions and mass flow rates along the CCS chain. All investigations were based on a generic “CCS cluster scenario” in which CO2 streams captured from a spatial cluster of eleven emitters (seven fossil-fired power plants, two cement plants, one refinery and one steel mill) are collected in a regional pipeline network. The resulting CO2 stream (19.78 Mio t impure CO2 per year) is transported in a trunk line (onshore and offshore) and injected into five generic replicate storage structures (Buntsandstein saline aquifers) offshore. Experimental investigations and modeling of selected impacts revealed beneficial as well as adverse impacts of different impurities and their combinations. Overall, no fundamental technical obstacles for transporting, injecting and storing CO2 streams of the considered variable compositions and mass flow rates were observed. We recommend to define minimum composition thresholds for each specific CCS project through limiting i) the overall CO2 content, ii) maximum contents of relevant impurities or elements, iii) acceptable variability of concentrations of critical impurities, and defining impurity combinations to be avoided. KW - Impurities KW - CO2 quality KW - Pipeline network KW - Whole-chain CCS scenario KW - Recommendations PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543004 DO - https://doi.org/10.1016/j.ijggc.2022.103589 SN - 1750-5836 VL - 114 SP - 1 EP - 14 PB - Elsevier CY - New York, NY AN - OPUS4-54300 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rizzardi, Q. A1 - McElfresh, C. A1 - Sparks, G. A1 - Stauffer, D. A1 - Marian, J. A1 - Maaß, Robert T1 - Mild-to-wild plastic transition is governed by athermal screw dislocation slip in bcc Nb N2 - Plastic deformation in crystals is mediated by the motion of line defects known as dislocations. For decades, dislocation activity has been treated as a homogeneous, smooth continuous process. However, it is now recognized that plasticity can be determined by longrange correlated and intermittent collective dislocation processes, known as avalanches. Here we demonstrate in body-centered cubic Nb how the long-range and scale-free dynamics at room temperature are progressively quenched out with decreasing temperature, eventually revealing intermittency with a characteristic length scale that approaches the Burgers Vector itself. Plasticity is shown to be bimodal across the studied temperature regime, with conventional thermally-activated smooth plastic flow (‘mild’) coexisting with sporadic Bursts (‘wild’) controlled by athermal screw dislocation activity, thereby violating the classical Notion of temperature-dependent screw dislocation motion at low temperatures. An abrupt increase of the athermal avalanche component is identified at the critical temperature of the material. Our results indicate that plasticity at any scale can be understood in terms of the coexistence of these mild and wild modes of deformation, which could help design better alloys by suppressing one of the two modes in desired temperature Windows. KW - Plastic deformation KW - Microplastic stress KW - Intermittent microplasticity PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543927 DO - https://doi.org/10.1038/s41467-022-28477-4 VL - 13 IS - 1 SP - 1 EP - 9 PB - Nature AN - OPUS4-54392 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Inui, H. A1 - Kishida, K. A1 - Li, L. A1 - Manzoni, Anna Maria A1 - Haas, S. A1 - Glatzel, U. T1 - Uniaxial mechanical properties of face‑centered cubic singleand multiphase high‑entropy alloys N2 - Since the high entropy concept was proposed at the beginning of the millennium, the research focus of this alloy family has been wide ranging. The initial search for single-phase alloys has expanded with the aim of improving mechanical properties. This can be achieved by several strengthening mechanisms such as solid-solution hardening, hot and cold working and precipitation hardening. Both single- and multiphase high- and medium-entropy alloys can be optimized for mechanical strength via several processing routes, as is the case for conventional alloys with only one base element, such as steels or Ni-based superalloys. KW - High entropy alloy KW - Compositionally complex alloys KW - Tensile properties PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543955 DO - https://doi.org/10.1557/s43577-022-00280-y VL - 47 IS - 2 SP - 168 EP - 174 PB - Springer AN - OPUS4-54395 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -