TY - CONF A1 - Zocca, Andrea A1 - Schubert, Hendrik A1 - Günster, Jens T1 - Additive Manufacturing of advanced ceramics by layerwise slurry deposition and binder jetting (LSD-print) N2 - Powder bed technologies are amongst the most successful Additive Manufacturing (AM) techniques. Powder bed fusion and binder jetting especially are leading AM technologies for metals and polymers, thanks to their high productivity and scalability. The application of these techniques to most ceramics has been difficult so far, because of the challenges related to the deposition of homogeneous powder layers when using fine powders. In this context, the "layerwise slurry deposition" (LSD) has been developed as a layer deposition method which enables the use of powder bed AM technologies also for advanced ceramic materials. The layerwise slurry deposition consists of the layer-by-layer deposition of a ceramic slurry by means of a doctor blade, in which the slurry is deposited and dried to achieve a highly packed powder layer. This offers high flexibility in the ceramic feedstock used, especially concerning material and particle size. The LSD technology can be combined with binder jetting to develop the so-called “LSDprint” process for the additive manufacturing of ceramics. The LSDprint technology combines the high-speed printing of binder jetting with the possibility of producing a variety of high-quality ceramics with properties comparable to those achieved by traditional processing. In this presentation, the LSD process will be introduced and several examples of application ranging from silicate to high-performance ceramics will be shown. Recent developments towards the scale-up and industrialization of this process will be discussed, alongside future perspectives for the multi-material additive manufacturing. T2 - Ceramics in Europe 2022 CY - Krakow, Poland DA - 10.07.2022 KW - Layerwise slurry deposition KW - Laser induced slipcasting KW - Additive Manufacturing KW - Ceramics PY - 2022 AN - OPUS4-55543 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Günster, Jens T1 - A comparison of layerwise slurry deposition and (LSD-print) laser induced slip casting (LIS) for the additive manufacturing of advanced ceramics N2 - The presentation gives an overview of two slurry-based additive manufacturing (AM) technologies specifically developed for advanced ceramic materials. The “Layerwise Slurry Deposition” (LSD-print) is a modification of Binder Jetting making use of a ceramic slurry instead of a dry powder as a feedstock. In this process, a slurry is deposited layer-by-layer by means of a doctor blade and dried to achieve a highly packed powder layer, which is then printed by jetting a binder. The LSD-print technology combines the high-speed printing of binder jetting with the possibility of producing a variety of high-quality ceramics with properties comparable to those achieved by traditional processing. The Laser Induced Slip casting (LIS) technology follows a novel working principle by locally drying and selectively consolidating layer-by-layer a ceramic green body in a vat of slurry, using a laser as energy source. LIS combines elements of Vat Photopolymerization with the use of water-based feedstocks containing a minimal amount of organic additives. The resulting technology can be directly integrated into a traditional ceramic process chain by manufacturing green bodies that are sintered without the need of a dedicated debinding. Both technologies offer high flexibility in the ceramic feedstock used, especially concerning material and particle size. Advantages and disadvantages are briefly described to outline the specific features of LSD-print and LIS depending on the targeted application. T2 - AM Ceramics CY - Vienna, Austria DA - 27.09.2023 KW - Additive Manufacturing KW - Dental KW - Ceramics KW - Feldspar PY - 2023 AN - OPUS4-58468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -