TY - CONF A1 - Falkenberg, Rainer T1 - Modelling of hydrogen-induced ductility loss in titanium-based hydrogen storage N2 - One promising solution for decarbonisation is the use of hydrogen as energy carrier. Besides its exceptional advantages like high calorific value, better safety and non-existent harmful emissions, one major challenge is still hydrogen embrittlement of Ttitanium alloys used as a hydrogen storage. In this work, a method is presented that can numerically model and determine a threshold concentration of hydrogen in solid solution responsible for a sudden ductile-to-brittle transition. The origin of this sudden loss of ductility lies in the segregation kinetics thermodynamics that is modelled together with an elastoplastic fracture mechanics model. Starting from experimental fracture mechanics test data, a meaningful coupling mechanism was found for the fracture mechanics cohesive zone model in the form of a segregation-modified cohesive energy that triggers an acceleration of crack extension above defined concentration values. It can be demonstrated that above a threshold of only few atomic percent hydrogen in the solid solution, the segregated hydrogen concentration exceeds 20 at.%. The current results present a mechanism that enables the modelling of the sudden ductility loss triggered by a segregation-affected crack energy expression in titanium alloys exposed to hydrogen. This method is not only applicable to other various materials but can also be a substantial benefit for the safety assessment of hydrogen storage devices. T2 - 5th EMMC International Workshop 2025 CY - Vienna, Austria DA - 08.04.2025 KW - Segregation Transition KW - Hydrogen Embrittlement KW - Titanium Alloys KW - Crack Propagation KW - Ductile-to-Brittle Transition PY - 2025 AN - OPUS4-63177 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Falkenberg, Rainer A1 - Darvishi Kamachali, Reza T1 - Segregation-induced hydrogen embrittlement in titanium N2 - Although titanium offers an optimal combination of strength, low weight, and toughness for various applications, it suffers from a drawback: loss of ductility upon exposure to hydrogen. In this work, we couple CALPHAD-integrated density-based thermodynamic modelling of hydrogen segregation with an experimentally calibrated fracture model to investigate its on crack propagation in titanium. Here we propose to model the crack propagation path as a quasi-interface with slightly opened structure and reduced atomic density, enabling interstitial hydrogen segregation. The atomic density is then directly linked with the damage parameter. We found that hydrogen segregation in titanium undergoes a significant transition such that above a threshold of only few atomic percent hydrogen in the solid solution, the interfacial hydrogen concentration exceeds 20 at.%. Integrating this information into our fracture model, the material damage evolution could be explained by a segregation-affected Griffith crack energy, resulting in material decohesion. We found that the segregation transition and subsequent embrittlement effects are critically sensitive to the temperature in the system. The present results suggest a mechanism underlying the sudden loss of fracture toughness during crack propagation, in relation to the ductile-to-brittle transition observed in titanium alloys exposed to hydrogen. The proposed CALPHAD-integrated chemo-mechanical framework can be further generalised for studying more complex failure mechanisms in various materials. KW - Segregation transition KW - Hydrogen embrittlement KW - Titanium alloys KW - Crack propagation KW - Ductile-to-brittle transition PY - 2025 DO - https://doi.org/10.1016/j.mtla.2025.102411 SN - 2589-1529 VL - 41 SP - 1 EP - 12 PB - Elsevier Inc. AN - OPUS4-63130 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Charmi, Amir A1 - Falkenberg, Rainer A1 - Ávila Calderón, Luis A1 - Mohr, Gunther A1 - Sommer, Konstantin A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Saliwan Neumann, Romeo A1 - Evans, Alexander A1 - Skrotzki, Birgit T1 - Mechanical anisotropy of additively manufactured stainless steel 316L: An experimental and numerical study N2 - The underlying cause of mechanical anisotropy in additively manufactured (AM) parts is not yet fully understood and has been attributed to several different factors like microstructural defects, residual stresses, melt pool boundaries, crystallographic and morphological textures. To better understand the main contributing factor to the mechanical anisotropy of AM stainless steel 316L, bulk specimens were fabricated via laser powder bed fusion (LPBF). Tensile specimens were machined from these AM bulk materials for three different inclinations: 0◦, 45◦, and 90◦ relative to the build plate. Dynamic Young’s modulus measurements and tensile tests were used to determine the mechanical anisotropy. Some tensile specimens were also subjected to residual stress measurement via neutron diffraction, porosity determination with X-ray micro-computed tomography (μCT), and texture analysis with electron backscatter diffraction (EBSD). These investigations revealed that the specimens exhibited near full density and the detected defects were spherical. Furthermore, the residual stresses in the loading direction were between −74 ± 24 MPa and 137 ± 20 MPa, and the EBSD measurements showed a preferential ⟨110⟩ orientation parallel to the build direction. A crystal plasticity model was used to analyze the elastic anisotropy and the anisotropic yield behavior of the AM specimens, and it was able to capture and predict the experimental behavior accurately. Overall, it was shown that the mechanical anisotropy of the tested specimens was mainly influenced by the crystallographic texture. KW - Mechanical anisotropy KW - Residual stress KW - Crystal plasticity KW - Selective laser melting (SLM) KW - Laser beam melting (LBM) PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511719 DO - https://doi.org/10.1016/j.msea.2020.140154 SN - 0921-5093 VL - 799 SP - 140154 PB - Elsevier B.V. AN - OPUS4-51171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stargardt, Patrick A1 - Bresch, Sophie A1 - Falkenberg, Rainer A1 - Mieller, Björn T1 - Effect of Reaction Layers on Internal Stresses in Co‐Fired Multilayers of Calcium Manganate and Calcium Cobaltite N2 - A widespread recovery of waste heat requires a cost‐effective production of thermoelectric generators. Thermoelectric oxides are predestined for use at high temperatures. For manufacturing reasons, a multilayer generator design will be easily scalable and cost‐effective. To evaluate the potential of ceramic multilayer technology for that purpose, a multilayer of the promising thermoelectric oxides calcium cobaltite (Ca3Co4O9), calcium manganate (CMO, CaMnO3), and glass–ceramic insulation layers is fabricated. Cracks and reaction layers at the interfaces are observed in the microstructure. The compositions of these reaction layers are identified by energy‐dispersive X‐ray spectroscopy and X‐ray diffraction. Mechanical and thermal properties of all layers are compiled from literature or determined by purposeful sample preparation and testing. Based on this data set, the internal stresses in the multilayer after co‐firing are calculated numerically. It is shown that tensile stresses in the range of 50 MPa occur in the CMO layers. The reaction layers have only a minor influence on the level of these residual stresses. Herein, it is proven that the material system is basically suitable for multilayer generator production, but that the co‐firing process and the layer structure must be adapted to improve densification and reduce the tensile stresses in the CMO. KW - Ceramic multilayers KW - Co-firings KW - Internal stresses PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601626 DO - https://doi.org/10.1002/pssa.202300956 SP - 1 EP - 9 PB - Wiley VHC-Verlag AN - OPUS4-60162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -