TY - CONF A1 - Mieller, Björn T1 - Electrode area dependence of dielectric breakdown strength N2 - Dielectric breakdown of ceramics is widely believed to originate from microstructural defects. Still, there is no commonly accepted model for the origin and process of dielectric failure that covers all observed phenomena and dependencies. In analogy to mechanical strength, the Weibull distribution is commonly used to evaluate dielectric strength data. This works well for a given group of specimens with constant geometry. But unlike mechanical strength, dielectric strength scales with the inverse square root of sample thickness. This cannot be explained by the classic Weibull concept. The Griffith type energy release rate model of dielectric breakdown proposed by Schneider is based on space charge injection and conducting filaments from the sample surface. This model incorporates the distinct thickness dependence and the pronounced influence of surface defects. Based on this model and the classic Weibull probability of failure, Schneider’s group theoretically derived a probability of breakdown that predicts an increase of failure probability with increasing electrode area. In our study we tested this model with dielectric strength data measured on dense alumina samples using different electrode areas. Weibull modulus and characteristic dielectric strength (scale parameter) were determined for a set of measurements using small electrodes. These values were used to calculate the failure probability under large electrodes according to the model. The calculated data excellently fits the measured values. Thus, our experiments substantiate the assumptions made in the breakdown model and the significance of surface defects for dielectric failure. T2 - 94. DKG Jahrestagung CY - Leoben, Austria DA - 05.05.2019 KW - Dielectric strength KW - Breakdown strength KW - Ceramics PY - 2019 AN - OPUS4-48015 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Schönauer-Kamin, D. A1 - Moos, R. A1 - Giovanelli, F. A1 - Rabe, Torsten T1 - Influence of pressure assisted sintering and reaction sintering on microstructure and thermoelectric properties of bi-doped and undoped calcium cobaltite N2 - Calcium cobaltite (Ca3Co4O9) is considered as one of the most promising thermoelectric p-type oxides for energy harvesting applications at temperatures above 500 °C. It is challenging to sinter this material as its stability is limited to 920 °C. To facilitate a practicable and scalable production of Ca3Co4O9 for multilayer generators, a systematic study of the influence of powder calcination, Bi-doping, reaction sintering, and pressure-assisted sintering (PAS) on microstructure and thermoelectric properties is presented. Batches of doped, undoped, calcined, and not calcined powders were prepared, tape-cast, and sintered with and without uniaxial pressure at 900 °C. The resulting phase compositions, microstructures and thermoelectric properties were analysed. It is shown that the beneficial effect of Bi-doping observed on pressureless sintered samples cannot be transferred to PAS. Liquid phase formation induces distortions and abnormal grain growth. Although the Seebeck coefficient is increased to 139 µV/K by Bi-doping, the power factor is low due to poor electrical conductivity. The best results were achieved by PAS of calcined powder. The dense and textured microstructure exhibits a high power factor of 326 µW/mK² at 800 °C but adversely high thermal conductivity in the relevant direction. The figure of merit is higher than 0.08 at 700 °C. KW - Ceramics KW - Calcium cobaltite KW - Thermoelectric properties KW - Calcination KW - Pressure-assisted sintering PY - 2019 U6 - https://doi.org/10.1063/1.5107476 SN - 0021-8979 VL - 126 IS - 7 SP - 075102-1 EP - 075102-11 PB - AIP Publishing CY - Melville AN - OPUS4-48708 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -