TY - JOUR A1 - Wang, Lei A1 - Darvishi Kamachali, Reza T1 - Incorporating elasticity into CALPHAD-informed density-based grain boundary phase diagrams reveals segregation transition in Al-Cu and Al-Cu-Mg alloys N2 - The phase-like behavior of grain boundaries (GBs), recently evidenced in several materials, is opening up new possibilities in the design of alloy microstructures. In this context, GB phase diagrams are contributing to a predictive description of GB segregation and (interfacial) phase changes. The influence of chemo-mechanical solute-GB interactions on the GB phase diagram remains elusive so far. This is particularly important for multi-component alloys where the elastic interactions among solute atoms, of various sizes and bonding energies, can prevail, governing a complex co-segregation phenomenon. Recently, we developed a density-based model for GB thermodynamics that intrinsically accounts for GB elasticity in pure elements. In this work, we incorporate the homogeneous and heterogeneous elastic energies associated with the solutes into the density-based framework. We derive the multi-component homogeneous elastic energy by generalizing the continuum misfitting sphere model and extend it for GBs. The density-based free energy functional directly uses bulk CALPHAD thermodynamic data. The model is applied to binary and ternary Al alloys. We reveal that the elastic energy can profoundly affect the GB solubility and segregation behavior, leading to Cu segregation in otherwise Cu-depleted Al GBs. Consequently, GB segregation transition, i.e., a jump in the GB segregation as a function of alloy composition, is revealed in Al-Cu and Al-Cu-Mg alloy systems with implications for subsequent GB precipitation in these alloys. CALPHAD-informed elasticity-incorporated GB phase diagrams enable addressing a broader range of GB phenomena in engineering multi-component alloys. KW - Grain boundary thermodynamics KW - Density-based model KW - Al alloys KW - Grain boundary phase diagram KW - CALPHAD KW - Elastic energy PY - 2021 DO - https://doi.org/10.1016/j.commatsci.2021.110717 VL - 199 SP - 110717 PB - Elsevier B.V. AN - OPUS4-53058 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Lei A1 - Darvishi Kamachali, Reza T1 - CALPHAD integrated grain boundary co-segregation design: Towards safe high-entropy alloys N2 - Along with the desire for developing novel multi-principal element alloys, also known as high-entropy alloys, the concern about their safe application is also increasingly growing. This relates to the alloys’ phase stability, in particular, the control required over unexpected phase decompositions resulting from solute segregation at grain boundaries. Yet, the mechanisms of co-segregation and grain boundary phase decomposition in multi-component alloys are rather challenging to explore. In fact, quantitative investigation of grain boundary behaviors is mostly conducted for binary and a few ternary alloys. In this work, we apply the recently introduced CALPHAD-integrated density-based formalism [RSC Advances 10 (2020) 26728-26741] for considering co-segregation phenomena in alloys with an arbitrary number of components —the term ‘co-segregation’ here refers to co-evolution and any mutual interplay among the solute atoms during their interaction with a grain boundary. Quaternary Fe-Co-Mn-Cr alloy system is studied. We present two major advances beyond previous results: First, a co-segregation-induced multi-component grain boundary spinodal decomposition is quantitatively simulated for the first time. We found that in addition to its low cohesive energy and asymmetrical mixing enthalpy due to magnetic ordering, Mn plays a leading role in triggering interfacial phase decomposition by having a relatively large, concentration-dependent atomic mobility. Second, as an alternative to grain boundary phase diagrams proposed for binary and ternary alloys, we introduce the concept of co-segregation maps for grain boundary segregation screening and design in multi-component alloys. Applying the co-segregation maps, the nonlinear Mn and Cr co-segregation are discussed. Depicted on the alloying composition and phase space, the co-segregation maps enable the required insights to guide a safer, more controlled design of high-entropy alloys. KW - High-Entropy Materials KW - Density-based Phase-Field Modelling KW - CALPHAD KW - Alloys' Safety PY - 2023 DO - https://doi.org/10.1016/j.jallcom.2022.167717 SN - 0925-8388 VL - 933 SP - 1 EP - 12 PB - Elsevier CY - Lausanne AN - OPUS4-56274 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Murugan, Jegatheesan T1 - Extending Grain Boundary Phase Diagrams to Multi-Phase Boundary Diagrams N2 - Phase diagrams serve as fundamental blueprints for comprehending material behaviour and guiding material design. However, the phase diagrams are largely available only for the bulk phases. The thermodynamic properties and phase behaviour of defects, such as grain boundaries (GBs) and phase boundaries (PBs), are equally important for the safe design of materials. Recently, we developed CALPHAD-integrated density-based phase field model (DPF) to calculate the thermodynamic data of GBs. In the model, the GB was represented by a continuous relative atomic density field with reference to a single bulk density and a Gibbs free energy functional was derived. In this work, we extend the DPF model by re-deriving the Gibbs free energy functional for PBs lying between heterogeneous bulk phases of different atomic densities. Here, we use phase-specific atomic densities to normalize the phase properties on either side of the PB such that the relative density fields are continuous across the interface. Using the model, the multi-phase interfacial thermodynamic data are obtained and related phase boundary diagrams are constructed. We study binary and ternary Fe-Mn-X alloy systems. In the Fe-Mn multi-phase boundary diagram, a shrinkage in the α-ferrite region is observed. Integrated with CALPHAD databases, the developed model may be used to calculate the segregation of solute to the PBs, paving way to manipulate segregation behaviour for microstructure design. T2 - FEMS 2025 EUROMAT CY - Granada, Spain DA - 14.09.2025 KW - Phase boundary diagrams KW - Interface thermodynamics KW - CALPHAD PY - 2025 AN - OPUS4-64425 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Darvishi Kamachali, Reza T1 - Co-segregation phenomena and stability issues in high-entropy alloys using density-based phase-field modelling N2 - Several recent studies have revealed that the phase decomposition in medium- and high-entropy alloys is triggered by solute segregation at grain boundaries. The chemically complex nature of these alloys already clues that such segregation in materials should be something more than the interaction between solutes and grain boundary, but also affected by the solute-solute interactions during the segregation. In fact, experiments indicate the significance of such solute-solute interaction. Yet, the mechanisms of co-segregation in multi-component alloys are rather challenging to explore and rarely studied quantitatively. Recently, a CALPHAD-integrated density-based phase-field model has been proposed for studying grain boundary phenomena. Several applications of this model have shown its expansive capacity for investigating grain boundary segregation and phase behavior. In this talk, the applications of this model to studying co-segregation phenomena and grain boundary phase diagrams in multi-component alloys are presented ––the term ‘co-segregation’ here refers to co-evolution and any mutual interplay among the solutes and grain boundary during the segregation. In particular, the iron-based ternary and quaternary alloys are discussed. I show how a grain boundary may have its own miscibility gap and how this immiscibility can influence the co-segregation behavior. As an alternative to grain boundary phase diagrams, rather suited for binary and ternary alloys, a new concept of co-segregation maps for screening and segregation design in multi-component alloys is presented. Applying the co-segregation maps, the nonlinear Mn and Cr co-segregation in Fe-Co-Mn-Cr is discussed. T2 - 19th International Conference on Diffusion in Solids and Liquids (DSL-2023) CY - Crete, Greece DA - 26.06.2023 KW - CALPHAD KW - Co-segregation KW - Phase-field Simulation PY - 2023 AN - OPUS4-57965 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Murugan, Jegatheesan T1 - Thermodynamics of Grain Boundary Segregation in Fe-Ni-Cr Alloy Systems N2 - Phase stability in multi-components alloy systems is still largely unknown, especially at the internal interfaces. Grain boundary (co-)segregation is one of the main causes of instability and therefore safety issues in microstructures. In this work, the segregation in FCC Fe-Ni-Cr alloy system, which is the base for several steels, super-alloys and high entropy alloys, is studied. The density-based phase-field model is advanced to compute the segregation of Fe, Ni and Cr at the grain boundary corresponding to the bulk composition. Here the relative density of the grain boundary to the bulk is the mean-field parameter of the model. The necessary thermodynamic parameters of the bulk are obtained from the CALPHAD database. We performed high-throughput screening of the elemental segregation at the grain boundary across the stable bulk compositions at different temperatures (723 K, 1023 K and 1323 K). The results reveal complex enrichment/depletion of each element depending on the alloy composition and temperature. Opposite segregation of Ni and Cr and co-segregation of Ni and Fe is observed for almost all compositions at 723 K, but a changing trend is observed with increasing temperature. We discuss the origin and consequences of these segregation behaviours in the light of magnetic ordering effects. T2 - Materials Science and Engineering (MSE) 2024 CY - Darmstadt, Germany DA - 24.09.2024 KW - Segregation KW - Grain boundaries KW - CALPHAD PY - 2024 AN - OPUS4-62343 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Darvishi Kamachali, Reza T1 - Grain Boundary Segregation Design using CALPHAD-integrated Phase-Field Modelling N2 - A main source of current challenges in materials science and engineering is the ever-increasing complexity in materials chemistry and processing resulting in complex microstructures, making the assessment of process-microstructure-property-performance relations difficult, even unmanageable. Here the computational materials science is facing the same situation. In this talk, I share a viewpoint that the complexities in chemistry, processing and microstructures can be circumscribed by integrating existing knowledges of bulk thermodynamics and kinetics to the unknown thermodynamics and kinetics of microstructure elements. To this end, I discuss several successful examples on grain boundary segregation engineering how this scientific advance can be conducted. A roadmap is proposed, beginning to form on generalizing the concept of phase diagrams. T2 - ICAMS Advance Discussions: Advanced models for microstructure evolution – process-microstructure-property relationships CY - Bochum, Germany DA - 26.10.2022 KW - Microstructure Design KW - CALPHAD KW - Phase-Field Simulations KW - Machine Learning KW - Phase Diagrams PY - 2022 AN - OPUS4-56348 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Darvishi Kamachali, Reza T1 - CALPHAD integrated density-based phase diagrams and opening possibilities for grain boundary engineering N2 - Engineering grain boundaries demands a quantitative description of both their segregation and specific phase behavior. Recently I have proposed a density-based model for grain boundary thermodynamics that enables CALPHAD integrated derivation of grain boundary phase diagrams, broadly applied now in studying various alloys. Combining this model with experimental investigations, in this talk, new aspects of interfacial segregation and phase transformation revealed in polycrystalline alloys are discussed. The effect of elastic interaction on grain boundary phase behavior is incorporated. We consider Al alloys and novel high-entropy alloys and discuss a general strategy for grain boundary engineering. T2 - 18th Discussion Meeting on Thermodynamics of Alloys (TOFA) CY - Krakow, Poland DA - 12.09.2022 KW - CALPHAD KW - Microstructure Design KW - Materials Modelling PY - 2022 AN - OPUS4-56044 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ahmadian, A. A1 - Scheiber, D. A1 - Zhou, X. A1 - Gault, B. A1 - Darvishi Kamachali, Reza A1 - Romaner, L. A1 - Ecker, W. A1 - Dehm, G. A1 - Liebscher, C. H. T1 - Interstitial segregation has the potential to mitigate liquid metal embrittlement in iron N2 - The embrittlement of metallic alloys by liquid metals leads to catastrophic material failure and severely impacts their structural integrity. The weakening of grain boundaries by the ingress of liquid metal and preceding segregation in the solid are thought to promote early fracture. However, the potential of balancing between the segregation of cohesion-enhancing interstitial solutes and embrittling elements inducing grain boundary decohesion is not understood. Here, we unveil the mechanisms of how boron segregation mitigates the detrimental effects of the prime embrittler, zinc, in a Σ5 [0 0 1] tilt grain boundary in α −Fe (4 at.% Al). Zinc forms nanoscale segregation patterns inducing structurally and compositionally complex grain boundary states. Ab-initio simulations reveal that boron hinders zinc segregation and compensates for the zinc induced loss in grain boundary cohesion. Our work sheds new light on how interstitial solutes intimately modify grain boundaries, thereby opening pathways to use them as dopants for preventing disastrous material failure. KW - Materials Modelling KW - Liquid Metal Embrittlement KW - Alloy Safety KW - CALPHAD KW - Microstructure Design PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573576 DO - https://doi.org/10.1002/adma.202211796 SN - 0935-9648 IS - e2211796 PB - Wiley online library AN - OPUS4-57357 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Darvishi Kamachali, Reza T1 - On the origin of embrittlement in Mn containing and Zn-coated steels N2 - Grain boundary embrittlement in medium-Mn steels and liquid metal embrittlement (LME) in Zn-coated high strength steels are among key challenges on the way of safe application of sustainable steels for automotive industry. Using a novel density-based model for grain boundaries, we reveal that the affinity of a grain boundary to attract Mn and Zn atoms result in a segregation transition accompanied by interfacial structural changes. In case of the Zn, the simulations show that the amount of segregation abruptly increases with decreasing temperature, while the Zn content in the alloy, required for triggering the segregation transition, decreases. The results are discussed in the context of CALPHAD-integrated density-based grain boundary phase diagrams. T2 - DPG 2024 CY - Berlin, Germany DA - 17.03.2024 KW - Phase-Field Simulation KW - CALPHAD KW - Steels KW - Density-based Thermodynamics PY - 2024 AN - OPUS4-60743 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Murugan, Jegatheesan A1 - Darvishi Kamachali, Reza T1 - High‑throughput investigation of grain boundary segregation landscape in the Fe–Ni–Cr system N2 - Understanding phase stability in multicomponent alloy systems, particularly at internal interfaces, remains a major challenge in materials science. Grain boundary (co-)segregation is a critical factor influencing interfacial stability, often leading to microstructural degradation and safety concerns. In this study, we investigate segregation behavior in the face-centered cubic (FCC) Fe–Ni–Cr alloy system, a foundational system for many steels, superalloys, and high-entropy alloys. CALPHAD-integrated density-based phase-field model is extended to compute the segregation of Fe, Ni, and Cr at grain boundaries as a function of the bulk composition, with the relative GB density serving as a key parameter representing grain boundary character. A high-throughput computational screening is performed across the stable compositional space at 723 K, 1023 K, and 1323 K. The results reveal a rich and temperature-sensitive segregation landscape, with element-specific enrichment and depletion patterns that vary with alloy composition. Notably, opposite segregation trends between Ni and Cr, and frequent co-segregation of Fe and Ni, are observed at lower temperatures. The developed framework captures the coupled effects of temperature, chemical interactions, grain boundary structure, and enthalpy-entropy compensation on segregation and GB phase stability. The origin and implications of these phenomena are discussed in terms of the underlying thermodynamic driving forces. KW - Segregation Engineering KW - Grain boundary segregation KW - Thermodynamics KW - CALPHAD KW - Fe--Ni--Cr alloys PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-646404 DO - https://doi.org/10.1007/s10853-025-11717-5 SN - 1573-4803 SP - 1 EP - 21 PB - Springer Science + Business Media CY - Dordrecht [u.a.] AN - OPUS4-64640 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -