TY - CONF A1 - Weinel, Kristina T1 - Plasmonic Behavior in Assemblies of Disordered Gold Nanoparticles N2 - Plasmons are collective oscillations of the free electron density in metals which can be described by an electromagnetic field. Surface plasmons are longitudinal waves propagating at the surface of the metallic material coupled to an external field. Localized surface plasmons on a nanoparticle reveal the behavior of standing waves with discrete resonance frequencies whose dominating mode is called dipole mode. Coupling of nanoparticles leads eventually to a hybridization of those dipole modes and therefore to spectral and spatial delocalization which was already investigated in ordered systems. In disordered systems, there are a lot of open questions regarding the propagation behavior which changes from delocalization to localization for instance due to the disorder. This phenomenon is then called Anderson localization. To investigate the propagation behavior of plasmonic waves in an assembly of disordered gold NPs, we combine experimental results of electron energy loss spectroscopy in a scanning transmission microscope with simulation results of the self-consistent dipole modelling. We indeed find experimentally localization of plasmon modes and with the simulation we could exclude other localization mechanism such as life-time damping or retardation. In conclusion, we could found Anderson localization of surface plasmons in assemblies of disordered gold nanoparticles which will enhance the understanding of this kind of vector waves to the Anderson localization as a general wave behavior in disordered systems. T2 - PhD seminar Leipniz Institut for solid state and material research (IFW Dresden) CY - Dresden, Germany DA - 19.06.2024 KW - Plasmonic KW - EELS in STEM KW - Self-consistent dipole model KW - Assemblies of gold nanoparticles PY - 2024 AN - OPUS4-60945 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Weinel, Kristina A1 - Hahn, Marc Benjamin A1 - Lubk, Axel A1 - Feng, Wen A1 - Martinez, Ignacio Gonzalez A1 - Büchner, Bernd A1 - Agudo Jácome, Leonardo T1 - Electron-beam-induced modification of gold microparticles in an SEM N2 - Electron-beam-induced conversion of materials in a transmission electron microscope uses the high power density of a localized electron beam of acceleration voltages above 100 kV as an energy source to transform matter at the sub-micron scale. Here, the e-beam-induced transformation of precursor microparticles employing a low-energy e-beam with an acceleration voltage of 30 kV in a scanning electron microscope is developed to increase the versatility and efficiency of the technique. Under these conditions, the technique can be classified between e-beam lithography, where the e-beam is used to mill holes in or grow some different material onto a substrate, and e-beam welding, where matter can be welded together when overcoming the melting phase. Modifying gold microparticles on an amorphous SiOx substrate reveals the dominant role of inelastic electron-matter interaction and subsequent localized heating for the observed melting and vaporization of the precursor microparticles under the electron beam. Monte-Carlo scattering simulations and thermodynamic modeling further support the findings. KW - Scanning electron microscopy KW - Electron-beam-induced modification KW - Heat transfer KW - Gold microparticles KW - Nanoparticles synthesis PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-609513 UR - https://arxiv.org/html/2408.02409v1 SP - 1 EP - 9 AN - OPUS4-60951 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -