TY - JOUR A1 - Belli, R. A1 - Hurle, K. A1 - Schürrlein, J. A1 - Petschelt, A. A1 - Werbach, K. A1 - Peterlik, H. A1 - Rabe, Torsten A1 - Mieller, Björn A1 - Lohbauer, U. T1 - Relationships between fracture toughness, Y2O3 fraction and phase content in modern dental Yttria-doped zirconias N2 - The relationship between fracture toughness and Yttria content in modern zirconia ceramics was revised. For that purpose, we evaluated here 10 modern Y2O3-stabilized zirconia (YSZ) materials currently used in biomedical applications, namely prosthetic and implant dentistry. The most relevant range between 2-5 mol% Y2O3 was addressed by selecting from conventional opaque 3 mol% YSZ up to more translucent compositions (4-5 mol% YSZs). A technical 2YSZ was used to extend the range of our evaluation. The bulk mol% Y2O3 concentration was measured by X-Ray Fluorescence Spectroscopy. Phase quantification by Rietveld refinement considered two tetragonal phases or an additional cubic phase. A first-account of the fracture toughness (KIc) of the pre-sintered blocks is given, which amounted to 0.4 – 0.7 MPa√m. In the fully-densified state, an inverse power-law behavior was obtained between KIc and bulk mol% Y2O3 content, whether using only our measurements or including literature data, challenging some established relationships. A linear relationship between KIc and the fraction of the transformable t-phase was established within the range of 30–70 vol%. KW - Ceramics KW - Dental KW - Zirconia KW - Fracture toughness KW - X-ray-diffraction KW - Power law PY - 2021 DO - https://doi.org/10.1016/j.jeurceramsoc.2021.08.003 VL - 41 IS - 15 SP - 7771 EP - 7782 PB - Elsevier Ltd. AN - OPUS4-53107 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn T1 - Electric field distribution on ceramic samples during dielectric strength testing N2 - The dielectric breakdown strength of ceramics strongly depends on the test conditions. Thus, standardized test procedures and thorough documentation are indispensable. However, during dielectric strength testing the breakdown often occurs near the electrode edge or even outside the specified electrode area. This behavior is similarly observed for printed and cylindrical electrodes. The aim of the presented study was to calculate the electric field strength distribution in a ball-on-plate testing setup for metallized samples and to correlate the field distribution with the observed breakdown locations. Small misalignments in the test setup were also considered in the simulations. Furthermore, the field strength at the breakdown Location should be compared to the experimentally determined dielectric strength. Therefore, Finite Element Models of several test conditions with varying printed electrode areas and sample thicknesses were created and electrostatic calculations of the electric field Distribution were performed. The simulation results were compared to experimental data. Alumina (96 %) was used as test material. The calculations show that the electric field strength maxima match the experimentally observed locations of breakdown. Without any fitting of the model, the maximum calculated field strength is in reasonable agreement with the experimental dielectric strength. The FE analysis is a helpful tool to understand the observations in experimental dielectric strength testing. T2 - CERAMICS 2021 / 96th DKG Annual Meeting CY - Online Meeting DA - 19.04.2021 KW - Dielectric breakdown KW - Dielectric strength KW - Electric field strength KW - Ceramics PY - 2021 AN - OPUS4-52512 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Schönauer-Kamin, D. A1 - Moos, R. A1 - Reimann, T. A1 - Giovannelli, F. A1 - Rabe, Torsten T1 - Influence of pressure and dwell time on pressure‐assisted sintering of calcium cobaltite N2 - Calcium cobaltite Ca3Co4O9, abbreviated Co349, is a promising thermoelectric material for high‐temperature applications in air. Its anisotropic properties can be assigned to polycrystalline parts by texturing. Tape casting and pressure‐assisted sintering (PAS) are a possible future way for a cost‐effective mass‐production of thermoelectric generators. This study examines the influence of pressure and dwell time during PAS at 900°C of tape‐cast Co349 on texture and thermoelectric properties. Tape casting aligns lentoid Co349. PAS results in a textured Co349 microstructure with the thermoelectrically favorable ab‐direction perpendicular to the pressing direction. By pressure variation during sintering, the microstructure of Co349 can be tailored either toward a maximum figure of merit as required for energy harvesting or toward a maximum power factor as required for energy harvesting. Moderate pressure of 2.5 MPa results in 25% porosity and a textured microstructure with a figure of merit of 0.13 at 700°C, two times higher than the dry‐pressed, pressureless‐sintered reference. A pressure of 7.5 MPa leads to 94% density and a high power factor of 326 µW/mK2 at 800°C, which is 11 times higher than the dry‐pressed reference (30 MPa) from the same powder. KW - Hot pressing KW - Texture KW - Thermoelectric properties PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515973 DO - https://doi.org/https://doi.org/10.1111/jace.17541 SN - 0002-7820 VL - 104 IS - 2 SP - 917 EP - 927 PB - Wiley Periodicals LLC AN - OPUS4-51597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hajian, A. A1 - Konegger, T. A1 - Bielecki, K. A1 - Mieller, Björn A1 - Rabe, Torsten A1 - Schwarz, S. A1 - Zellner, C. A1 - Schmid, U. T1 - Wet chemical porosification with phosphate buffer solutions for permittivity reduction of LTCC substrates N2 - The wireless high-frequency technology requires a robust, cost-effective, and highly integrated substrate technology offering the capability for areas of tailored permittivity. The wet-chemical porosification of low temperature co-fired ceramics (LTCC) substrates offers such an approach by locally embedding air. Porosification of LTCC in both extremely acidic and alkaline media has been investigated in previous works. However, for improving the available knowledge on the porosification of LTCC with H3PO4 as a standard and a widely used etching solution, the impact of solution concentration was systematically investigated and a substantial improvement in the etching performance was achieved. Moreover, in the present study, for the first time, the intermediate pH values, and the impact of pH as a key parameter on the etching process have been investigated. For this purpose, the applicability of phosphate buffer solution (PBS) as a prospective novel etchant mixture for the porosification of a commercially available LTCC tape (Ceramtape GC) was explored. Valuable information about surface morphology, crystalline composition, and the pore structure of the etched LTCCs was gathered employing scanning electron microscopy, transmission electron microscopy, X-ray diffraction analysis, and mercury porosimetry measurements. Based on these findings, the performance of PBS-based etchant systems towards the generation of porous LTCCs combining high depths of porosification with acceptable surface characteristics for subsequent metallization is demonstrated. Based on the obtained results, by application of a 0.2 mol L−1 solution of PBS, the effective relative permittivity of test samples with a thickness of approximately 600 µm and a porosification depth of 186 µm from each side, could be reduced up to 10% of its initial “as fired” value. Also, based on the measurement results and by measuring the depth of porosification, the permittivity of the etched layer was estimated to show a reduction of up to 22% compared to the initial “as fired” value. KW - LTCC KW - Porosification KW - Wet chemical etching KW - Permittivity reduction PY - 2020 DO - https://doi.org/10.1016/j.jallcom.2020.158059 SN - 0925-8388 VL - 863 SP - 158059 PB - Elsevier B.V. AN - OPUS4-51800 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Höhne, Patrick A1 - Mieller, Björn A1 - Rabe, Torsten T1 - Advancing spray granulation by ultrasound atomization N2 - The influence of the atomization technique on the suitability of granules for dry pressing is the focus of the presented investigations. Therefore, destabilized alumina, zirconia, and zirconia toughened alumina (ZTA) slurries were spray dried and the obtained granules were used to fabricate green and finally sintered bodies for evaluation. Granules made in a laboratory spray dryer with a two-fluid nozzle served as a reference. An ultrasonic atomizer was integrated into the same spray dryer and the influence on the granule properties was evaluated. Untapped bulk density, granule size distribution, and flowability are among the evaluated granule-related properties as well as the granule yield which is used as an indicator of the process efficiency. Yield and flowability as most important granule properties are clearly improved when atomization is realized with ultrasound. The investigated sinter body properties include porosity, sinter body density, and biaxial strength and are as well positively affected by switching the atomization technique to ultrasound. Therefore, the Approach to improve the compressibility of granules by ultrasonic atomization, which leads to an improved microstructure, density, and strength of sintered bodies, has proven to be successful for single-component ceramics (alumina and zirconia) as well as for the multicomponent ceramic ZTA. KW - Alumina KW - Granules KW - Spray drying KW - Ultrasound KW - Zirconia KW - Zirconia-toughened alumina PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510696 DO - https://doi.org/10.1111/ijac.13534 VL - 17 IS - 5 SP - 2212 EP - 2219 AN - OPUS4-51069 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn T1 - Practical breakdown voltage calculations using dielectric breakdown strength reference values N2 - Dielectric breakdown is a catastrophic failure of ceramic substrates and insulators. The use of dielectric breakdown strength (DBS) reference values for the dimensioning of such components is not straightforward, as the DBS depends on sample thickness and electrode area. This fact also hampers a valid comparison of data taken from different literature sources. Based on the empirically confirmed proportionality of DBS to the reciprocal square root of sample thickness and an approach to account for the influence of electrode area on the failure probability, a practical equation is derived to calculate the breakdown voltage for arbitrary sample thickness and electrode area from one set of DBS reference data. To validate the equation, the AC DBS of commercial alumina substrates with thicknesses ranging from 0.3 mm to 1.0 mm was performed using different printed electrodes with varying areas. The breakdown voltages comprise a range from 18 kV for thick samples to 8.5 kV for thin samples, resulting in DBS values from 17 kV/mm for 1.0 mm thick samples to 29 kV/mm for 0.3 mm thin samples, all made from the same material. The influence of electrode area is comparatively smaller. The results calculated with the proposed equation are in reasonable accordance with the measured data. Thus, the equation can be applied for a proper comparison of literature DBS data measured in different setups and for a reasonable estimation of breakdown voltages in DBS tests and applications based on reference data. T2 - Electroceramics Conference XVII CY - Online meeting DA - 24.08.2020 KW - Ceramics KW - Dielectric breakdown KW - Weibull distribution PY - 2020 AN - OPUS4-51151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul A1 - Mieller, Björn A1 - Rabe, Torsten A1 - Markötter, Henning ED - Petzow, G. ED - Mücklich, F. T1 - Machine learning assisted characterization of a Low Temperature Cofired Ceramic (LTCC) module measured by synchrotron computed tomography N2 - The 5G technology promises real time data transmission for industrial processes, autonomous driving, virtual and augmented reality, E-health applications and many more. The Low Temperature Co-fired Ceramics (LTCC) technology is well suited for the manufacturing of microelectronic components for such applications. Still, improvement of the technology such as further miniaturization is required. This study focuses on the characterization of inner metallization of LTCC multilayer modules, especially on the vertical interconnect access (VIA). Critical considerations for this characterization are delamination, pore clustering in and at the edge of the VIA, deformation, and stacking offset. A LTCC multilayer consisting of a glassy crystalline matrix with silver based VIAs was investigated by synchrotron x-ray tomography (CT). The aim of this study is to propose a multitude of structural characteristic values to maximize the information gained from the available dataset. Data analysis has been done with the open source software ImageJ as well as several additional plugins. The high-resolution CT data was evaluated through 2D slices for accessibility reasons. The segmentation of all 2000 slices to assess the different regions e.g. pores, silver and glass ceramic was done by a supervised machine learning algorithm. A quantitative evaluation of shape, deformation, and porosity of the VIA with respect to its dimensions is presented and the suitability of the characterization approach is assessed. T2 - 54. Metallographie Taagung CY - Online meeting DA - 16.09.2020 KW - Machine Learning KW - LTCC KW - Synchrotron Tomography PY - 2020 SN - 978-3-88355-422-8 VL - 54 SP - 136 EP - 141 PB - Deutsche Gesellschaft für Materialkunde e.V CY - Sankt Augustin AN - OPUS4-51298 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn A1 - Rabe, Torsten T1 - Design and fabrication of ceramic springs N2 - Ceramic springs offer versatile possibilities for load bearing or sensor applications in challenging environments. Although it may appear unexpected, a wide range of spring constants can be implemented by material selection and especially by the design of the spring. Based on a rectangular cross-section of the windings, it is possible to design a spring geometry that generates the desired spring constant simply by choosing appropriate diameter, height, widths, and number of windings. In a recent research project the calculation of helical compression springs made of rectangular steel (German standard DIN 2090) was applied for the design of ceramic springs. A manufacturing technology has been worked out to fabricate such springs from hollow cylinders of several highly dense technical ceramics by milling. Ceramic springs with precise rectangular section, without edge damage, and mean surface roughness smaller than 0.2 µm were produced after parameter optimization. Tolerances of less than 10 µm were achieved regarding spring diameter, height, and width of cross section. It is shown that the calculations outlined in the standard are valid for a variety of ceramic materials as well. Demonstrator springs with a wide range of spring constants have been fabricated, including zirconia springs with 0.02 N/mm, alumina springs with 1 N/mm and Si3N4 springs with 5 N/mm. A reproducibility study of six zirconia springs with a constant of 0.3 N/mm showed a relative difference in spring constants of less than +/- 1 %. This combination of a valid calculation approach for spring geometry and a reliable manufacturing technology allows for purposeful development and fabrication of ceramic springs with precise mechanical properties and superior chemical stability. T2 - EUROMAT 2019 CY - Stockholm, Sweden DA - 01.09.2019 KW - Ceramic spring KW - Hard machining KW - Spring constant PY - 2019 AN - OPUS4-48870 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn T1 - Electrode area dependence of dielectric breakdown strength N2 - Dielectric breakdown of ceramics is widely believed to originate from microstructural defects. Still, there is no commonly accepted model for the origin and process of dielectric failure that covers all observed phenomena and dependencies. In analogy to mechanical strength, the Weibull distribution is commonly used to evaluate dielectric strength data. This works well for a given group of specimens with constant geometry. But unlike mechanical strength, dielectric strength scales with the inverse square root of sample thickness. This cannot be explained by the classic Weibull concept. The Griffith type energy release rate model of dielectric breakdown proposed by Schneider is based on space charge injection and conducting filaments from the sample surface. This model incorporates the distinct thickness dependence and the pronounced influence of surface defects. Based on this model and the classic Weibull probability of failure, Schneider’s group theoretically derived a probability of breakdown that predicts an increase of failure probability with increasing electrode area. In our study we tested this model with dielectric strength data measured on dense alumina samples using different electrode areas. Weibull modulus and characteristic dielectric strength (scale parameter) were determined for a set of measurements using small electrodes. These values were used to calculate the failure probability under large electrodes according to the model. The calculated data excellently fits the measured values. Thus, our experiments substantiate the assumptions made in the breakdown model and the significance of surface defects for dielectric failure. T2 - 94. DKG Jahrestagung CY - Leoben, Austria DA - 05.05.2019 KW - Dielectric strength KW - Breakdown strength KW - Ceramics PY - 2019 AN - OPUS4-48015 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mieller, Björn T1 - Influence of test procedure on dielectric breakdown strength of alumina N2 - Dielectric strength testing of ceramics can be performed with various setups and parameters. Comparisons of results from different sources are often not meaningful, because the results are strongly dependent on the actual testing procedure. The aim of this study is to quantify the influence of voltage ramp rate, electrode size, electrode conditioning, and sample thickness on the measured AC dielectric strength of a commercial alumina. Mean values, Weibull moduli, and failure probabilities determined in standardized short time tests are evaluated and related to withstand voltage tests. Dielectric strength values in the range from 21.6 to 33.2 kV/mm were obtained for the same material using different testing procedures. Short time tests resulted in small standard deviations (< 2 kV/mm) and high Weibull moduli around 30, while withstand tests at voltage levels with low and virtual zero failure probability in short time tests resulted in large scatter of withstand time and Weibull moduli < 1. The strong decrease in Weibull moduli is attributed to progressive damage from partial discharge and depolarization during AC testing. These findings emphasize the necessity of a thorough documentation of testing procedure and highlight the importance of withstand voltage tests for a comprehensive material characterization. KW - Ceramic KW - High-voltage testing KW - Dielectric breakdown KW - Alumina PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-483852 DO - https://doi.org/10.1007/s40145-018-0310-4 SN - 2226-4108 SN - 2227-8508 VL - 8 IS - 2 SP - 247 EP - 255 PB - Springer AN - OPUS4-48385 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -