TY - CONF A1 - Mieller, Björn A1 - Schulz, Bärbel A1 - Rabe, Torsten T1 - Tailoring the spring constant of ceramic helical compression springs N2 - Ceramic springs combine attractive properties for applications in machinery, metrology, and sensor technology. They are electrically insulating, non-magnetic, provide a linear stress-strain behavior, and are stable at high temperatures and in corrosive environments. Generally, the precise dimensioning of a ceramic spring with respect to the spring constant is challenging. Different models are described, but many of these calculations do not match the actual spring properties. We demonstrate a reliable approach for the dimensioning and manufacturing of helical compression springs with a rectangular winding cross-section. Based on the German standard DIN 2090, which is referring to metallic springs, the spring constant can be calculated based on shear modulus, diameter, height, widths, and number of windings. Different ceramic springs were produced by milling of sintered hollow cylinders of zirconia, alumina and silicon nitride. The experimental spring constants are in very good agreement with the calculated values. Spring constants of zirconia springs were varied over three orders of magnitude between 0.02 N/mm and 5 N/mm by purposeful adaption of the spring geometry. The combination of dimensioning based on DIN 2090 and precise hard machining offers a reliable technology for the fabrication of tailored ceramic springs for special applications. T2 - 45th International Conference and Exhibition on Advanced Ceramics and Composites (ICACC 2021) CY - Online meeting DA - 08.02.2021 KW - Ceramics KW - Hard machining KW - Spring constant PY - 2021 AN - OPUS4-52136 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -