TY - JOUR A1 - Kupsch, Andreas A1 - Trappe, Volker A1 - Müller, Bernd R. A1 - Bruno, Giovanni T1 - Evolution of CFRP stress cracks observed by in situ X-ray refractive imaging JF - IOP conference series: Materials science and engineering N2 - Modern air-liners and wind turbine rotor blades are made up primarily of fiber reinforced plastics. Failure of these materials heavily impairs the serviceability and the operational safety. Consequently, knowledge of the failure behavior under static and cyclic loads is of great interest to estimate the operational strength and to compare the performance of different materials. Ideally, the damage evolution under operational load is determined with in situ non-destructive testing techniques. Here, we report in-situ synchrotron X-ray imaging of tensile stress induced cracks in carbon fiber reinforced plastics due to inter-fiber failure. An inhouse designed compact tensile testing machine with a load range up to 15 kN was integrated into the beamline. Since conventional radiographs do not reveal sufficient contrast to distinguish cracks due to inter-fiber failure and micro cracking from fiber bundles, the Diffraction Enhanced Imaging (DEI) technique is applied in order to separate primary and scattered (refracted) radiation by means of an analyzer crystal. This technique allows fast measurements over large fields-of-view and is ideal for in-situ investigations. Imaging and the tensile test are run at the highest possible frame rate (0.7 s-1 ) and the lowest possible strain rate (5.5∙10-4 s -1 ). For 0°/90° non-crimp fabrics, the first inter-fiber cracks occur at 380 MPa (strain 0.8 %). Prior to failure at about 760 MPa (strain 2.0 %), we observe the evolution of nearly equidistant (1 mm distance) cracks running across the entire sample in the fully damaged state. KW - X-ray refraction KW - Diffraction Enhanced Imaging KW - Carbon Fiber Reinforced Plastics KW - In situ tensile test KW - Crack evolution PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515060 DO - https://doi.org/10.1088/1757-899X/942/1/012035 SN - 1757-8981 SN - 1757-899X VL - 942 SP - 012035-1 EP - 012035-9 PB - IOP publishing CY - Bristol, UK AN - OPUS4-51506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -