TY - JOUR A1 - Finn, Monika A1 - Uhlemann, Patrick A1 - Meyer, Christian A1 - Scheuerlein, C. A1 - Amez-Droz, M. A1 - Meuter, F. A1 - Konstantopoulou, K. A1 - Savary, F. A1 - Tock, J.-P. T1 - Thermomechanical properties of polymers for use in superconducting magnets N2 - The coefficient of thermal expansion (CTE) and the thermomechanical properties of the polymers used in superconducting magnets need to be known in order to predict their stress state under the different magnet assembly and operating conditions. We have measured Young’s moduli of typically used polymers during in situ heat cycles with the dynamic resonancemethod. The dynamic test results are compared with Young’s moduli determined from quasi-static stress–strain measurements at room temperature, 77 K and 4.2 K. A moderate elastic anisotropy is found for the fiber reinforced polymers. CTEs are compared based on dilation experiments. TheCTEs of the fiber reinforced polymers studied are similar to those of copper or steel. In contrast, the pure resins exhibit relatively larger CTEs. KW - Polymer KW - Superconducting magnet KW - Young´s modulus KW - Stress-strain behavior KW - Resonance testing KW - Coefficient of thermal expansion PY - 2019 U6 - https://doi.org/10.1109/TASC.2019.2898321 SN - 1051-8223 SN - 1558-2515 VL - 29 IS - 5 SP - 7701605, 1 EP - 5 PB - IEEE AN - OPUS4-47616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scheuerlein, C. A1 - Finn, Monika A1 - Meyer, Christian A1 - Lackner, F. A1 - Savary, F. A1 - Rehmer, Birgit T1 - Thermomechanical Behavior of the HL-LHC 11 Tesla Nb3Sn Magnet Coil Constituents During Reaction Heat Treatment N2 - The knowledge of the temperature-induced changes of the superconductor volume and of the thermomechanical behavior of the different coil and tooling materials is required for predicting the coil geometry and the stress distribution in the coil after the Nb3Sn reaction heat treatment. In this paper, we have measured the Young’s and shear moduli of the HL-LHC 11 T Nb3Sn dipole magnet coil and reaction tool constituents during in situ heat cycles with the dynamic resonance method. The thermal expansion behaviors of the coil components and of a free standing Nb3Sn wire were compared based on dilation experiments. KW - Superconducting magnet KW - Young`s modulus KW - Thermal expansion KW - Stress-strain-behavior PY - 2018 U6 - https://doi.org/10.1109/TASC.2018.2792485 SN - 1051-8223 SN - 1558-2515 VL - 28 IS - 3 SP - 4003806 - 1 EP - 4003806 - 6 PB - IEEE Council on Superconductivity CY - New York AN - OPUS4-44020 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. A1 - Fedelich, Bernard A1 - Finn, Monika A1 - Künecke, Georgia A1 - Rehmer, Birgit A1 - Nolze, Gert A1 - Leistner, C. A1 - Petrushin, N. A1 - Svetlov, I. T1 - Investigation of Elastic Properties of the Single-Crystal Nickel-Base Superalloy CMSX-4 in the Temperature Interval between Room Temperature and 1300 °C N2 - The elastic properties of the single-crystal nickel-base superalloy CMSX-4 used as a blade material in gas turbines were investigated by the sonic resonance method in the temperature interval between room temperature and 1300 °C. Elastic constants at such high temperatures are needed to model the mechanical behavior of blade material during manufacturing (hot isostatic pressing) as well as during technical accidents which may happen in service (overheating). High reliability of the results was achieved using specimens of different crystallographic orientations, exciting various vibration modes as well as precise measurement of the material density and thermal Expansion required for modeling the resonance frequencies by finite element method. Combining the results measured in this work and literature data the elastic constants of the gamma and gamma' phases were predicted. This prediction was supported by measurement of the temperature dependence of the gamma'fraction. All data obtained in this work are given in numerical or analytical forms and can be easily used for different scientific and engineering calculations. KW - Nickel-base superalloys KW - Single-crystals KW - Characterization KW - Elastic constants PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-520972 VL - 11 IS - 2 SP - 152 PB - MDPI AN - OPUS4-52097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -