TY - JOUR A1 - Rhode, Michael A1 - Richter, Tim A1 - Schröpfer, Dirk A1 - Manzoni, Anna Maria A1 - Schneider, M. A1 - Laplanche, G. T1 - Welding of high-entropy alloys and compositionally complex alloys - an overview JF - Welding in the World N2 - High-entropy alloys (HEAs) and compositionally complex alloys (CCAs) represent new classes of materials containing five or more alloying elements (concentration of each element ranging from 5 to 35 at. %). In the present study, HEAs are defined as single-phase solid solutions; CCAs contain at least two phases. The alloy concept of HEAs/CCAs is fundamentally different from most conventional alloys and promises interesting properties for industrial applications (e.g., to overcome the strength-ductility trade-off). To date, little attention has been paid to the weldability of HEAs/CCAs encompassing effects on the welding metallurgy. It remains open whether welding of HEAs/CCAs may lead to the formation of brittle intermetallics and promote elemental segregation at crystalline defects. The effect on the weld joint properties (strength, corrosion resistance) must be investigated. The weld metal and heat-affected zone in conventional alloys are characterized by non-equilibrium microstructural evolutions that most probably occur in HEAs/CCAs. The corresponding weldability has not yet been studied in detail in the literature, and the existing information is not documented in a comprehensive way. Therefore, this study summarizes the most important results on the welding of HEAs/CCAs and their weld joint properties, classified by HEA/CCA type (focused on CoCrFeMnNi and AlxCoCrCuyFeNi system) and welding process. KW - High-entropy alloy KW - Compositionally complex alloy KW - Welding KW - Properties KW - Review PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527068 DO - https://doi.org/10.1007/s40194-021-01110-6 SP - 1 EP - 15 PB - Springer Nature AN - OPUS4-52706 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Richter, Tim A1 - Schröpfer, Dirk A1 - Manzoni, Anna Maria T1 - Welding of high-entropy alloys - New material concept vs. old challenges N2 - HEAs represent a relatively new class of materials. The the alloy concept is fundamentally different from the most conventional materials and alloys that are used today. Recently, the focus of HEA designs is more application-based. For that purpose, the elements of interest are carefully selected and multiple phases as well as micro-structures are deliberately adjusted. Currently, only limited attention has been paid to weldability of HEA. This encompasses possible effects on metallurgy and its influence on the desired properties. It remains open if welding causes e.g. considerable number of intermetallic phases or segregations and their effect on weld joint properties. For that reason, the scope of this study is to summarize already available studies on welding of HEAs with respect to the HEA-type, the applied welding process and its influence on the weld joint properties. T2 - IIW Annual Assembly, Meeting of Commission II-A CY - Online meeting DA - 20.07.2020 KW - High-entropy alloy KW - Welding KW - Review PY - 2020 AN - OPUS4-51116 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manzoni, Anna Maria A1 - Richter, Tim A1 - Rhode, Michael A1 - Schröpfer, Dirk T1 - Reliable welding of high-entropy alloys N2 - The importance of high-entropy alloy (HEAs) in the field of materials research is increasing continuously and numerous studies have been published, recently. These are mainly focused on manufacturing of different alloy systems having excellent structural properties from low to high temperatures. Therefore, HEAs are of high potential for many applications in very demanding conditions. However, this is so far limited by poor knowledge and experience regarding economic and reliable component manufacturing. The processability of HEAs has hardly been investigated so far, indicated by the small number of publications worldwide: welding <30 and machining <5. Hence, this contribution provides an overview about the current state of the art on processing of HEAs. Fundamental principles are shown for safe weld joints while ensuring high component integrity. For safe welding, the combined consideration of complex interactions of material, construction and process is necessary. Recent studies on different HEAs showed the influence of heat input by means of different welding processes on the microstructure and respective properties. Based on intensive literature survey and on our initial study, the main research objectives of processing HEAs are presented. T2 - ICHEM 2020 - Third International Conference on High Entropy Materials CY - Berlin, Germany DA - 27.09.2020 KW - High Entropy Alloy KW - Welding KW - Welding processing influences PY - 2020 AN - OPUS4-51591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manzoni, Anna Maria A1 - Rhode, Michael A1 - Erxleben, Kjell A1 - Richter, Tim A1 - Schroepfer, Dirk T1 - Mechanical performance and integrity of tungsten inert gas (TIG) welded CoCrFeMnNi high entropy alloy with austenitic steel AISI 304 N2 - High entropy alloys (HEA) are a new class of materials that have been investigated since the early 2000s and offer great potential to replace conventional alloys. However, since they sometimes have significant contents of expensive alloying elements such as Co or Ni, their use is only conceivable in highly stressed areas of components. For this purpose, the weldability with conventional alloys such as high-alloy austenitic steels must be investigated. In addition to the resulting microstructure, the mechanical properties are also fundamental for the usability of HEAs in DMWs. For this purpose, TIG welds of CoCrFeMnNi HEA (cold rolled and recrystallized state) with AISI 304 austenitic steel are investigated. These mechanical properties are analyzed in this work by means of tensile tests and local hardness measurement. The local strain behavior of the welded joints is also characterized by means of Digital Image Correlation (DIC). The results of the local hardness measurement show a clear influence of the initial condition of the HEA on the HAZ. Thus, the HEA in the cold-rolled condition shows a clear softening because of recrystallization processes in the HAZ. On the other hand, there is no influence on the hardness of the weld metal, which is approx. 200 HV0.1 in both cases. The tensile tests show a consistent failure of the weld in the weld metal. However, regardless of the HEA condition, strengths in the range of the recrystallized HEA (RM ~ 550–600 MPa) are achieved, although with significantly reduced fracture elongations. T2 - International Conference on High-Entropy Materials (ICHEM 2023) CY - Knoxville, TN, USA DA - 18.06.2023 KW - Multi-principal element alloys KW - Welding KW - Mechanical properties KW - Dissimilar metal weld KW - Digital image correlation PY - 2023 AN - OPUS4-57713 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -