TY - JOUR A1 - Ruffini, A. A1 - Le Bouar, Y. A1 - Finel, A. A1 - Epishin, A. I. A1 - Fedelich, Bernard A1 - Feldmann, Titus A1 - Viguier, B. A1 - Poquillon, D. T1 - Dislocations interacting with a pore in an elastically anisotropic single crystal nickel-base superalloy during hot isostatic pressing N2 - The formation of pores in CMSX-4 nickel based superalloys is detrimental to the service life of the material. A way to avoid the problem is to treat the superalloys under Hot Isostatic Pressing (HIP), which enables a large volume fraction of pores to be annihilated. This paper aims to understand the contribution of plastic activity related to the gliding of dislocations on the pore annihilation. Simulations based on a phase-field model of dislocation are performed and make it possible to consider the strong anisotropy of the CMSX-4 under HIP conditions in conjunction to the strong elastic heterogeneity introduced by the pore. For pores with a radius of few micrometers, it is shown that edge parts of dislocation lines that present an extra half atomic plane oriented towards the pore are stacked above and under it in the direction which is perpendicular to their slip-planes, causing an increase of the number of dislocation along the four octahedral directions of the FCC single crystal which intersect the pore center. Results are streamlined within the isotropic elastic theory of dislocations. Effects of elastic anisotropy and dislocation reactions are also investigated in order to specify what would be the dislocation configuration around a pore in CMSX-4 under HIP conditions. Notably, the elastic anisotropy is shown to significantly modify the arrangement of dislocations close to the pore equator. Simulations also allow for the characterization of pore/dislocation interactions when dislocations are involved in Low Angle Boundaries as experimentally observed. KW - HIP KW - Superalloys KW - Dislocation KW - Pore KW - Phase-field PY - 2022 DO - https://doi.org/10.1016/j.commatsci.2021.111118 SN - 0927-0256 VL - 204 SP - 1 EP - 14 PB - Elsevier CY - Amsterdam AN - OPUS4-54220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Feldmann, Titus A1 - Fedelich, Bernard A1 - Epishin, A. T1 - Simulation of Hot Isostatic Pressing in a Single-Crystal Ni Base Superalloy with the Theory of Continuously Distributed Dislocations Combined with Vacancy Diffusion N2 - Single-crystal components made of nickel base superalloys contain pores after casting and homogenization heat treatment. Hot isostatic pressing (HIP), which is carried above the γ' -solvus temperature of the alloy, is industrially applied to reduce porosity. A modeling of HIP based on continuously distributed dislocations is developed in a 2D setting. Glide and climb of straight-edge dislocations, as well as vacancy diffusion, are the deformation mechanisms taken into account. Thereby, dislocation glide is controlled by dragging a cloud of large atoms, and climb is controlled by vacancy diffusion. Relying on previous investigations of the creep behavior at HIP temperatures, it is assumed that new dislocations are nucleated at low-angle boundaries (LAB) and move through subgrains until they either reach the opposite LABs or react with other dislocations and annihilate. Vacancies are created at the pore surface and diffuse through the alloy until they are either consumed by climbing dislocations or disappear at the LABs. The field equations are solved by finite elements. It is shown that pore shrinking is mostly controlled by vacancy diffusion as the shear stresses at the LABs are too low to nucleate a sufficient amount of dislocations. KW - Nickel-base superalloys KW - HIP KW - Dislocation KW - Creep KW - Model PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542309 DO - https://doi.org/10.1002/adem.202101341 VL - 2022 PB - Wiley AN - OPUS4-54230 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. A1 - Camin, B. A1 - Hansen, L. A1 - Heuser, M. A1 - Lopez-Galilea, I. A1 - Ruttert, B. A1 - Theisen, W. A1 - Fedelich, Bernard T1 - Refinement and Experimental Validation of a Vacancy Model of Pore Annihilation in Single-Crystal Nickel-Base Superalloys during Hot Isostatic Pressing N2 - Initially, as-cast and homogenized single crystals of nickel-base superalloy CMSX-4 are subjected to hot isostatic pressing at 1288 °C. Two series of experiments are conducted: under the same pressure of 103 MPa but with different durations, between 0.5 and 6 h, and under different pressures, between 15 and 150 MPa, but for the same time of 0.5 h. The porosity annihilation is investigated metallographically and by high-resolution synchrotron X-ray tomography. The obtained experimental results are compared with the predictions of the vacancy model proposed recently in the group. Herein, the model is further refined by coupling with X-ray tomography. The model describes the evolution of the pore arrays enclosed in the 3D synchrotron tomograms during hot isostatic pressing and properly predicts the time and stress dependences of the pore annihilation kinetics. The validated model and the obtained experimental results are used for selecting the optimal technological parameters such as applied pressure and processing time KW - Superalloys KW - HIP KW - Single-Crystal KW - Diffusion PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-526859 DO - https://doi.org/10.1002/adem.202100211 VL - 23 IS - 7 SP - 211 AN - OPUS4-52685 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A.I. A1 - Nolze, Gert A1 - Alymov, M.I. T1 - Pore Morphology in Single Crystals of a Nickel-Based Superalloy After Hot Isostatic Pressing N2 - The morphology of pores partially shrunk during a half-hour HIP at temperature of 1288 °C and pressure of 103 MPa has been investigated in nickel-based superalloy CMSX-4. The investigation resulted in the following findings: surrounding the shrinking pores by a c¢-shell (Ni3Al), faceting of the pores surface by {023} and {011} planes, and formation the submicroscopic satellite pores connected by channels with the neighboring larger pores. It is assumed that the formation of the c¢-shell around the pores and the faceting of the pore surface is due to diffusion processes occurring during pore shrinkage, and therefore these findings can be considered as arguments supporting the vacancy model of pore annihilation. The submicroscopic satellite pores are expected to be the result of dividing the casting pores of a complex initial shape during their shrinking. The connecting channels are probably required for the gas to escape from the rapidly shrinking small satellite pores into the slowly shrinking large pore. Thus, it is reasonable to assume that the casting pores may contain some amount of gas. KW - HIP KW - Superalloy KW - Porosity KW - Faceting KW - negative crystal growth PY - 2022 DO - https://doi.org/10.1007/s11661-022-06893-x SN - 1073-5623 SP - 1 EP - 9 PB - Springer Nature AN - OPUS4-56409 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -