TY - JOUR A1 - Taketa, I. A1 - Kalinka, Gerhard A1 - Gorbatikh, L. A1 - Lomov, S. A1 - Verpoest, I. T1 - Influence of cooling rate on the properties of carbon fiber unidirectional composites with polypropylene, polyamide 6, and polyphenylene sulfide matrices JF - Advanced composite materials N2 - The longitudinal and transverse strength of three unidirectional thermoplastic prepreg systems: carbon fiber/polypropylene (CF/PP), polyamide 6 (CF/PA6), and polyphenylene sulfide (CF/PPS) are studied and analytical formulas are proposed for the estimation of matrix and fiber/matrix interface properties from composites properties. Since the matrices are semi-crystalline thermoplastics, the influence of cooling rate on the strength is statistically evaluated. While the 0° tensile strength is found to be independent of the cooling rate, the 90° tensile strength is strongly influenced by the matrix type and cooling rate. The matrix modulus increases as the cooling rate is decreased; the degree of crystallinity also increases. The matrix residual stress, interfacial shear strength, and mode II interlaminar fracture toughness are also found to depend on the cooling rate, with the trends different for different matrices. KW - Matrix residual stress KW - Thermoplastic prepreg KW - Unidirectional composites KW - Cooling rate KW - Interfacial strength PY - 2020 DO - https://doi.org/10.1080/09243046.2019.1651083 SN - 0924-3046 SN - 1568-5519 N1 - Die originale japanische Version des Artikels erschien in: Journal of the Japan Society for Composite Materials, Jg. 44, Nr. 4 (2018), S. 123-128. - The original Japanese version of the article was published in: Journal of the Japan Society for Composite Materials, vol. 44, no. 4 (2018), pp. 123-128. VL - 29 IS - 1 SP - 101 EP - 113 PB - Taylor & Francis CY - London AN - OPUS4-45433 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilbig, Janka A1 - Borges de Oliveira, F. A1 - Obaton, A.-F. A1 - Schwentenwein, M. A1 - Rübner, Katrin A1 - Günster, Jens T1 - Defect detection in additively manufactured lattices JF - Open Ceramics N2 - This paper investigates fast and inexpensive measurement methods for defect detection in parts produced by Additive Manufacturing (AM) with special focus on lattice parts made of ceramics. By Lithography-based Ceramic Manufacturing, parts were built both without defects and with typical defects intentionally introduced. These defects were investigated and confirmed by industrial X-ray Computed Tomography. Alternative inexpensive methods were applied afterwards on the parts such as weighing, volume determination by Archimedes method and gas permeability measurement. The results showed, that defects resulting in around 20% of change in volume and mass could be separated from parts free of defects by determination of mass or volume. Minor defects were not detectable as they were in the range of process-related fluctuations. Permeability measurement did not allow to safely identify parts with defects. The measurement methods investigated can be easily integrated in AM process chains to support quality control. KW - Additive manufacturing KW - Quality assurance KW - Defect detection KW - Lattices KW - Ceramics PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513547 DO - https://doi.org/10.1016/j.oceram.2020.100020 VL - 3 SP - 100020 PB - Elsevier Ltd. AN - OPUS4-51354 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kiefer, P. A1 - Maiwald, M. A1 - Deubener, J. A1 - Balzer, R. A1 - Behrens, H. A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Müller, Ralf T1 - Automated Analysis of Slow Crack Growth in Hydrous Soda-Lime Silicate Glasses JF - Frontiers in Materials N2 - To explore the impact of ambient and structural water on static fatigue, the initiation and growth of 3279 Vickers induced median radial cracks were automatically recorded and analyzed. We find that humidity is more efficient in initiating cracks and promoting their growth than water, which is dissolved in the glass structure. In particular for slow crack growth (< 3x10-6 m s-1), tests in dry nitrogen showed a considerable decrease in the crack growth exponent with increasing water content of the glasses. On the other hand, if tests were performed in humid air, the crack growth exponent was independent of the water content of the hydrous glasses, while stress intensity decreased slightly. These observations indicate that water promotes the processes at the crack-tip regardless of its origin. However, ambient water is more efficient. KW - Indentation fracture toughness KW - Slow crack growth KW - Automated analysis KW - Hydrous glass KW - Vickers indentation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513085 DO - https://doi.org/10.3389/fmats.2020.00268 VL - 7 SP - 268 AN - OPUS4-51308 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maaß, Robert T1 - Beyond Serrated Flow in Bulk Metallic Glasses: What Comes Next? JF - Innovations in high entropy alloys and bulk metallic glasses N2 - This manuscript is based on an oral contribution to the TMS 2020 annual meeting and is dedicated to Prof. Peter Liaw, who for decades has shown great interest in serrated plastic flow. Here we will focus on the case of bulk metallic glasses, and begin with briefly summarizing some aspects of serrated and non-serrated inhomogeneous flow—a phenomenon that has perplexed materials scientists for decades. Four directions of research are identified that emerged out of the desire to fundamentally understand the intermittent inhomogeneous flow response. These research directions gear away from the phenomenological stress–strain behavior but put the underlying shear defect into focus. Unsolved problems and future research topics are discussed. KW - Non-serrated inhomogeneous flow PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513106 DO - https://doi.org/10.1007/s11661-020-05985-w SN - 1073-5623 SP - 1 EP - 11 PB - Springer Nature AN - OPUS4-51310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Das, A. A1 - Dufresne, E.M. A1 - Maaß, Robert T1 - Structural dynamics and rejuvenation during cryogenic cycling in a Zr-based metallic glass JF - Acta Materialia N2 - Subjecting metallic glasses repeatedly to liquid nitrogen temperature has become a popular method to homogeneously rejuvenate the material. Here we reveal the atomic-scale structural dynamics using in- situ x-ray photon correlation spectroscopy (XPCS) during and after cryogenic cycling of a Zr-based metallic glass in two structural states (plate and ribbon). Heterogeneous structural dynamics is observed at 300 K that changes to monotonic aging at 78 K. It is found that cryogenic cycling homogenizes the relaxation time distribution. This effect is much more pronounced in the ribbon, which is the only structural state that rejuvenates upon cycling. We furthermore reveal how fast atomic-scale dynamics is correlated with longtime structural relaxation times irrespective of the structural state, and that the ribbon exhibits unexpected additional fast atomic-scale relaxation in comparison to the plate material. A structural picture emerges that points towards heterogeneities in the fictive temperature as a requirement for cryogenic energy storage. KW - Structural dynamics KW - Metallic glass KW - Relaxation KW - Rejuvenation KW - Cryogenic cycling PY - 2020 DO - https://doi.org/10.1016/j.actamat.2020.06.063 SN - 1359-6454 VL - 196 SP - 723 EP - 732 PB - Elsevier Ltd. AN - OPUS4-51311 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Höhne, Patrick A1 - Mieller, Björn A1 - Rabe, Torsten T1 - Advancing spray granulation by ultrasound atomization JF - International Journal of Applied Ceramic Technology N2 - The influence of the atomization technique on the suitability of granules for dry pressing is the focus of the presented investigations. Therefore, destabilized alumina, zirconia, and zirconia toughened alumina (ZTA) slurries were spray dried and the obtained granules were used to fabricate green and finally sintered bodies for evaluation. Granules made in a laboratory spray dryer with a two-fluid nozzle served as a reference. An ultrasonic atomizer was integrated into the same spray dryer and the influence on the granule properties was evaluated. Untapped bulk density, granule size distribution, and flowability are among the evaluated granule-related properties as well as the granule yield which is used as an indicator of the process efficiency. Yield and flowability as most important granule properties are clearly improved when atomization is realized with ultrasound. The investigated sinter body properties include porosity, sinter body density, and biaxial strength and are as well positively affected by switching the atomization technique to ultrasound. Therefore, the Approach to improve the compressibility of granules by ultrasonic atomization, which leads to an improved microstructure, density, and strength of sintered bodies, has proven to be successful for single-component ceramics (alumina and zirconia) as well as for the multicomponent ceramic ZTA. KW - Alumina KW - Granules KW - Spray drying KW - Ultrasound KW - Zirconia KW - Zirconia-toughened alumina PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510696 DO - https://doi.org/10.1111/ijac.13534 VL - 17 IS - 5 SP - 2212 EP - 2219 AN - OPUS4-51069 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Balzer, R. A1 - Behrens, H. A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Kiefer, P. A1 - Deubener, J. A1 - Fechtelkord, M. T1 - Water in Alkali Aluminosilicate Glasses JF - frontiers in Materials N2 - To understand the influence of water and alkalis on aluminosilicate glasses, three polymerized glasses with varying ratios of Na/K were synthesized [(22. 5-x)Na2O-xK2O-22.5 Al2O3-55 SiO2 with x = 0, 7.5, and 11.25]. Subsequently, these glasses were hydrated (up to 8 wt% H2O) in an internally heated gas pressure vessel. The density of hydrous glasses linearly decreased with water content above 1 wt%, consistent with the partial molar volume of H2O of 12 cm3/mol. Near-infrared spectroscopy revealed that hydroxyl groups are the dominant species at water content of <4 wt%, and molecular water becomes dominating at water content of >5 wt%. The fraction of OH is particularly high in the pure Na-bearing glass compared to the mixed alkali glasses. 27Al magic angle spinning-NMR spectroscopy shows that aluminum is exclusively fourfold coordinated with some variations in the local geometry. It appears that the local structure around Al becomes more ordered with increasing K/Na ratio. The incorporation of H2O reinforces this effect. The differential thermal analysis of hydrous glasses shows a significant mass loss in the range of glass transition already during the first upscan, implying the high mobility of water in the glasses. This observation can be explained by the open structure of the aluminosilicate network and by the low dissociation enthalpy of H2O in the glasses (≈ 8 kJ/mol). The effect of the dissolved H2O on the glass transition temperature is less pronounced than for other aluminosilicate glasses, probably because of the large fraction of Al in the glasses. KW - NMR spectroscopy KW - Alkali aluminosilicate glasses KW - Water speciation KW - Glass transition KW - Infrared spectroscopy PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509497 DO - https://doi.org/10.3389/fmats.2020.00085 VL - 7 SP - 85 AN - OPUS4-50949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lüders, C. A1 - Kalinka, Gerhard A1 - Li, Wei A1 - Sinapius, M. A1 - Wille, T. T1 - Experimental and numerical multiscale approach to thermally cycled FRP JF - Composite Structures N2 - Due to the different thermal expansion of the constituent materials, cyclic thermal loading of FRP induces alternating stresses in the material at two scales: at the micro scale (level of fibre–matrix-interaction) and at the macro scale (level of the multidirectional laminate). Especially the micro scale effect is not comprehensively investigated yet. Additionally, computational investigations mostly neglect this effect due to the homogenous modelling of the composite material. As this effect is assumed to significantly contribute to the fatigue of FRP at thermal loads, the present paper suggests an experimental and numerical multiscale approach including Experiments at the different involved material scales to separately observe the effects acting at these scales. The approach also includes numerical modelling for each scale to complement the knowledge gained from the Experiments and to create a basis for the consideration of the micro effect even in macroscopic fatigue models treating homogeneous modelled composites. The main focus of the contribution is to bring the overall Approach up for discussion, rather than to present the multiscale modelling details. KW - Fatigue KW - Thermal cycling KW - Fibre reinforced plastic KW - Cryogenic KW - Carbon Fibre KW - Epoxy Resin PY - 2020 DO - https://doi.org/10.1016/j.compstruct.2020.112303 SN - 0263-8223 VL - 244 SP - 112303 PB - Elsevier Ltd. CY - Niederlande AN - OPUS4-50844 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Waurischk, Tina A1 - Thieme, C. A1 - Rüssel, C. T1 - Crystal growth velocities of a highly anisotropic phase obtained via surface and volume crystallization of barium–strontium–zinc silicate glasses JF - Journal of Materials Science N2 - In the past few years, a new phase, Ba0.5Sr0.5Zn2Si2O7 with negative thermal expansion has been described in the literature. Some excess of SiO2 is necessary to produce glasses from which the Ba0.5Sr0.5Zn2Si2O7 phase can be crystallized. Unfortunately, in such glasses usually surface crystallization occurs; however, the addition of nucleating agents such as trace quantities of platinum or relatively high quantities of ZrO2 is necessary to achieve bulk nucleation. These additional components also affect the crystal growth velocity, which furthermore is different for crystal growth from the surface and in the bulk. In this paper, three different chemical compositions containing different ZrO2 concentrations, where one composition additionally contains 100 ppm platinum, are studied with respect to their crystallization behaviour. Although the compositions do not differ much, the crystallization behaviour and also the Crystal growth velocities are surprisingly different. KW - Glass ceramic KW - Crystal growth velocity KW - Low expansion PY - 2020 DO - https://doi.org/10.1007/s10853-020-04773-6 SN - 0022-2461 VL - 55 SP - 10364 EP - 10374 PB - Springer AN - OPUS4-50853 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Waurischk, Tina A1 - Müller, Ralf A1 - Reinsch, Stefan A1 - Kiefer, P. A1 - Deubener, J. A1 - Balzer, R. A1 - Behrens, H. T1 - Crack Growth in Hydrous Soda-Lime Silicate Glass JF - Frontiers in Materials N2 - Stable crack growth was measured for nominal dry and water-bearing (6 wt%) soda-lime silicate glasses in double cantilever beam geometry and combined with DMA studies on the effects of dissolved water on internal friction and glass transition, respectively. In vacuum, a decreased slope of logarithmic crack growth velocity versus stress intensity factor is evident for the hydrous glass in line with an increase of b-relaxation intensity indicating more energy Dissipation during fracture. Further, inert crack growth in hydrous glass is found to be divided into sections of different slope, which indicates different water related crack propagation mechanism. In ambient air, a largely extended region II is observed for the hydrous glass, which indicates that crack growth is more sensitive to ambient water. KW - Internal friction KW - Soda-lime silicate glass KW - Water content KW - Stable crack growth KW - DCB geometry KW - Stress intensity factor PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506829 DO - https://doi.org/10.3389/fmats.2020.00066 VL - 7 SP - Articel 66 AN - OPUS4-50682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -