TY - JOUR A1 - Falk, Florian A1 - Menneken, M. A1 - Stephan-Scherb, Christiane T1 - Real-time observation of high- temperature gas corrosion in dry and wet SO2-containing atmosphere N2 - Sulfur and water have a fundamental impact on the corrosion rate and potential failure of materials. It is therefore necessary to understand the mechanisms, rates, and potential means of transport, as well as the reactions of these elements with an alloy. This paper investigates the effect of water vapor in the initial stages of SO2 corrosion of an Fe-9Cr-0.5Mn model alloy at 650°C in situ under laboratory conditions using energy-dispersive x-ray diffraction analysis. Two separate experiments were run, one with a 99.5% Ar + 0.5% SO2 atmosphere and one with a 69.5% Ar + 0.5% SO2 + 30% H2O atmosphere. With a wet atmosphere, the alloy formed a scale with decreasing oxygen content towards the scale–alloy interface. Sulfides were identified above and below a (Fe, Cr)3O4 layer in the inner corrosion zone. In contrast to this, the overall scale growth was slower in a dry SO2 atmosphere. KW - Early oxidation KW - Early sulfidation KW - Ferritic steels PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-472844 UR - https://link.springer.com/article/10.1007/s11837-019-03335-9#enumeration DO - https://doi.org/10.1007/s11837-019-03335-9 SN - 1047-4838 SN - 1543-1851 VL - 71 SP - 1 EP - 6 PB - Springer CY - New York AN - OPUS4-47284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Klinger, Christian A1 - Bettge, Dirk A1 - Murakami, Y. T1 - Defects as a root cause of fatigue failure of metallic components. III: Cavities, dents, corrosion pits, scratches N2 - This third part of the review on defects as root cause of fatigue failure addresses cavities (pores, micro-shrinkages, unmelted regions), defective microstructures and microcracks as material defects and defects due to local damage during manufacturing, service and maintenance such as dents, scratches and localized corrosion. In addition, damage due to contact fatigue and the effect of surface roughness are discussed in the context of fatigue failure. Also addressed is the competition between different kinds of defects in controlling the initiation and early growth of fatigue cracks. KW - Pores KW - Micro-shrinkages KW - Impact damage KW - Contact fatigue KW - Corrosion pits KW - Scratches PY - 2019 DO - https://doi.org/10.1016/j.engfailanal.2019.01.034 SN - 1350-6307 VL - 97 SP - 759 EP - 776 PB - Pergamon-Elsevier Science Ltd CY - Oxford, England AN - OPUS4-47373 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Klinger, Christian A1 - Bettge, Dirk A1 - Murakami, Y. T1 - Defects as a root cause of fatigue failure of metallic components. I: Basic aspects N2 - According to the definition of the ASM handbook [1,3], a defect is "an imperfection. that can be shown to cause failure by a quantitative analysis and that would not have occurred in the absence of the imperfection". The topic of the present three-part review is a discussion of defects which can cause failure in cyclically loaded structures. The features discussed comprise material defects such as non-metallic inclusions, pores or micro-shrinkages, etc. and geometric defects such as surface roughness and secondary notches which have their origin in manufacturing, and defects such as surface damage due to scratches, impact events or contact fatigue as well as corrosion pits which arise in service. In this first part, the discussion is prefaced by an introduction to basic aspects which are essential for a deeper understanding of the characteristics and mechanisms how the defects influence fatigue crack initiation and propagation. These include the life cycle of a fatigue crack from initiation up to fracture, crack arrest, multiple crack initiation and coalescence, and the material and geometrical properties affecting these. KW - Defects KW - Fatigue crack propagation stages KW - Crack arrest KW - Multiple cracks PY - 2019 DO - https://doi.org/10.1016/j.engfailanal.2019.01.055 SN - 1350-6307 VL - 97 SP - 777 EP - 792 PB - Pergamon-Elsevier Science Ltd CY - Oxford, England AN - OPUS4-47372 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Klinger, Christian A1 - Bettge, Dirk A1 - Murakami, Y. T1 - Defects as a root cause of fatigue failure of metallic components. II: Non-metallic inclusions N2 - This second part of the review on defects as root cause of fatigue failure comprises the origin, the nature and the effects of non-metallic inclusions. Topics addressed are the different kinds of inclusions formed during the manufacturing process, various types of mis-match causing local stresses and, as a consequence, fatigue crack initiation, and effects of characteristics such as size, morphology, localization, spatial distribution and orientation of the defects on the fatigue behavior. Methods for inclusion counting and sizing are discussed along with statistical aspects necessary to be considered when evaluating structural components. KW - Non-metallic inclusions KW - Mis-match KW - Inclusion size KW - Inclusion cluster KW - Statistics PY - 2019 DO - https://doi.org/10.1016/j.engfailanal.2019.01.054 SN - 1350-6307 VL - 98 SP - 228 EP - 239 PB - Elsevier Ltd. AN - OPUS4-47459 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chandra, K. A1 - Dörfel, Ilona A1 - Wollschläger, N. A1 - Kranzmann, Axel T1 - Microstructural investigation using advanced TEM techniques of inner ocide layers formed on T92 steel in oxyfuel environment N2 - T92 steel was oxidized at 650 °C for 1000 h in dry and wet oxyfuel gases. The microstructure of inner oxide layer was investigated using scanning transmission electron microscopy and energy dispersive spectroscopy on thin lamellas of oxide cross-sections. The oxides were composed of fine equiaxed grains and separated into Fe-rich and Cr-rich regions. Fe-rich regions were wustite and iron sulphide while Cr-rich regions consisted of Fe-Cr spinel with different stoichiometries. Precipitates of (W,Mo)-rich oxides were formed within the oxide scale and beneath the oxide/alloy interface. Often iron sulphide and (W,Mo)-rich oxide were surrounded by Cr-rich spinel. KW - Steel KW - STEM KW - High temperature corrosion KW - Oxidation KW - Internal oxidation PY - 2019 DO - https://doi.org/10.1016/j.corsci.2018.12.008 SN - 0010-938X SN - 1879-0496 VL - 148 SP - 94 EP - 109 PB - Elsevier AN - OPUS4-47423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Saliwan Neumann, Romeo A1 - Reith, F. A1 - Etschmann, B. A1 - Kilburn, M. R. A1 - Brugger, J. T1 - Unravelling the formation histories of placer gold and platinum-group mineral particles from Corrego Bom Successo, Brazil: A window into noble metal cycling N2 - Gold and platinum-group-metals (PGM) are cycled through Earth's environments by interwoven geological, physical, chemical and biological processes leading to the trans/neoformation of metallic particles in placers. The placer deposit at Corrego Bom Successo (CBS, Brazil) is one of the few localities worldwide containing secondary gold- and PGM-particles. Placer gold consists of detrital particles from nearby hydrothermal deposits that were transformed in the surface environment. Processes that have affected these particles include shortdistance transport, chemical de-alloying of the primary Gold silver, and (bio)geochemical dissolution/reprecipitation of Gold leading to the formation of pure, secondary gold and the Dispersion of gold nanoparticles. The latter processes are likely mediated by non-living organic matter (OM) and bacterial biofilms residing on the particles. The biofilms are largely composed of metallophillic β- and γ-Proteobacteria. Abundant mobile gold and platinum nanoparticles were detected in surface waters, suggesting similar mobilities of these metals. Earlier hydrothermal processes have led to the formation of coarsely-crystalline, arborescent dendritic potarite (PdHg). On potarite surfaces, biogeochemical processes have then led to the formation of platinum- and palladium-rich micro-crystalline layers, which make up the botryoidal platinum palladium aggregates. Subsequently potarite was dissolved from the core of many aggregates leaving voids now often filled by secondary anatase (TiO2) containing biophilic elements. The presence of fungal structures associated with the anatase suggests that fungi may have contributed to ist formation. For the first time a primary magmatic PGM-particle comprising a mono-crystalline platinum palladium-alloy with platinum iridium osmium inclusions was described from this locality, finally defining a possible primary source for the PGM mineralisation. In conclusion, the formation of modern-day placer gold- and PGM-particles at CBS began 100s ofmillions of years ago bymagmatic and hydrothermal processes. These provided the metal sources for more recent biogeochemical cycling of PGEs and gold that led to the trans/neoformation of gold- and PGM-particles. KW - Gold KW - Platinum-group-metals KW - Biogeochemical cycling KW - Magmatic and hydrothermal processes KW - Biomineralisation PY - 2019 DO - https://doi.org/10.1016/j.gr.2019.07.003 SN - 1342-937X VL - 76 SP - 246 EP - 259 PB - Elsevier AN - OPUS4-48657 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Knauer, S A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Jaeger, P T1 - Contact angle and corrosion of a Water – CO2 system on X70 and S41500 at 278 K and pressures up to 20 MPa N2 - Interfacial properties related to wettability and corrosion in CO2 transport pipelines are experimentally determined by the sessile and the pendant drop methods. The contact angle of a water drop in a compressed CO2 atmosphere is analyzed on an X70 pipeline carbon steel and compared to that on a martensitic steel S41500 to elucidate the effect of corrosion process on active wetting behaviour. The measurements are performed with liquid CO2 at 278 K and pressures ranging from 5 to 20 MPa. The results show that the contact angle (CA) increases with pressure from 132 ° to 143 ° for S41500 and from 117 ° to 137 ° for X70 and decreases with drop age by 20 ° to 24 ° regardless of the pressure and of the fact that corrosion only occurs on X70, which is confirmed by scanning electron microscopy, element mapping and energy dispersive x-ray spectrometry (EDS) analysis. At higher pressure, the contact angles on both materials converge. Further, related properties like density and interfacial tension were determined. CO2 - saturated water has a higher density than pure water: At 5 MPa saturated water reaches a density of 1017 kg⋅m^(-3) and at 20 MPa 1026 kg⋅m^(-3) compared to pure water with a density of 1002 kg⋅m^(-3) and 1009 kg⋅m^(-3), respectively. In this pressure range the IFT drops from 33 mN⋅m^(-1)at 5 MPa to 23 mN⋅m^(-1) at 20 MPa. KW - Carbon capture KW - Utilization, and storage (CCUS) technology KW - Contact angle KW - Wetting KW - Corrosion KW - Condensate KW - Impurities KW - Carbon steel PY - 2019 UR - https://www.sciencedirect.com/science/article/pii/S1750583618309472?dgcid=author DO - https://doi.org/10.1016/j.ijggc.2019.06.021 SN - 1750-5836 SN - 1878-0148 VL - 89 SP - 33 EP - 39 PB - Elsevier, ScienceDirect AN - OPUS4-48601 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Winkelmann, A. A1 - Britton, T. B. T1 - Constraints on the effective electron energy spectrum in backscatter Kikuchi diffraction N2 - Electron backscatter diffraction (EBSD) is a technique to obtain microcrystallographic information from materials by collecting large-angle Kikuchi patterns in the scanning electron microscope (SEM). An important fundamental question concerns the scattering-angle dependent electron energy distribution, which is relevant for the formation of the Kikuchi diffraction patterns. Here we review the existing experimental data and explore the effective energy spectrum that is operative in the generation of backscatter Kikuchi patterns from silicon. We use a full pattern comparison of experimental data with dynamical electron diffraction simulations. Our energy-dependent cross-correlation based pattern matching approach establishes improved constraints on the effective Kikuchi pattern energy spectrum, which is relevant for high-resolution EBSD pattern simulations and their applications. KW - EBSD KW - Kikuchi pattern KW - Simulation KW - Energy distribution KW - Electron energy PY - 2019 SN - 2469-9950 SN - 2469-9969 VL - 99 IS - 6 SP - 064115-1 EP - 064115-13 PB - AIP AN - OPUS4-47635 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Röhsler, Andreas A1 - Sobol, Oded A1 - Unger, Wolfgang A1 - Böllinghaus, Thomas T1 - Comprehensive study of deuterium-induced effects in in austenitic stainless steel AISI 304L N2 - The damaging impact of hydrogen on the austenitic stainless steel AISI 304 L was analysed. To this aim, samples were charged electrochemically with the hydrogen isotope deuterium (2H, D) and examined with time-of-flight secondary ion mass spectrometry (ToF-SIMS) and electron backscatter diffraction (EBSD). The fusion of the obtained chemical and structural information revealed local enrichment of deuterium in austenite, transformation into martensite, crack formation and severe roughening of the specimen surface. The results indicated that martensite was not only formed during charging but also during Desorption and ToF-SIMS examinations. Furthermore, cross-sections of deuterium-charged samples revealed that in preferred deformation bands a g/ε/a 0 evolution is taking place. By means of microscopic analyses and carrier gas hot extraction (CGHE), it was found that the use of NaAsO2 as recombination poison decreased the uptake of hydrogen significantly and resulted in severe precipitation on the specimen surfaces. This is in contrast to the popular presumption that NaAsO2 enhances the uptake of hydrogen (and deuterium) during electrochemical charging by hampering its recombination from Atoms to molecules. KW - AISI 304L KW - Hydrogen KW - ToF-SIMS KW - Deuterium KW - Martensite PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-477540 DO - https://doi.org/10.1016/j.ijhydene.2019.03.058 SN - 0360-3199 SN - 1879-3487 VL - 44 IS - 23 SP - 12228 EP - 12238 PB - Elsevier Ltd. AN - OPUS4-47754 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nofz, Marianne A1 - Dörfel, Ilona A1 - Sojref, Regine A1 - Saliwan Neumann, Romeo T1 - Microstructure of bare and sol-gel alumina-coated nickel-base alloy Inconel 625 after long-term oxidation at 900 °C N2 - Though Ni-base superalloys show a high oxidation and corrosion resistance, coatings could still improve these properties, especially if used at temperatures up to 1000 °C. Here, a coating was prepared by applying a boehmite-sol via dip-coating and a subsequent heat treatment at 600 °C for 30 minutes. To evaluate the coating, the oxidation behavior of bare and alumina coated Ni-base alloy Inconel 625 in air at 900 °C was studied for up to 2000 h. Electron microscopic studies of sample surfaces and cross-sections showed that (i) in the 3.5 µm – 6.3 mm thick scale formed on the bare alloy, Fe and Ni are located as fine precipitates at the grain boundaries of the chromia-rich scale, (ii) Ni and Ti are concentrated to a minor degree at the grain boundaries of the scale, too; and for the coated sample: (iii) the only 1.8 µm thick sol-gel alumina coating slows down the formation of chromia on the alloy surface and reduces the outward diffusion of the alloy constituents. The protective effect of the coating was evidenced by (i) diminished chromium diffusion at grain boundaries resulting in less pronounced string-like protrusions at the outer surface of the coated IN 625, (ii) formation of a Cr-enriched zone above the alloy surface which was thinner than the scale on the uncoated sample, (iii) no detectable Cr-depleted zone at the alloy surface, and (iv) a narrower zone of formation of Kirkendall pores. KW - Inconel 625 KW - High-temperature oxidation KW - Oxidation protection KW - Sol-gel coating PY - 2019 DO - https://doi.org/10.1007/s11085-019-09888-z SN - 0030-770X VL - 91 IS - 3-4 SP - 395 EP - 416 PB - Springer Science+Business Media AN - OPUS4-47665 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -