TY - JOUR A1 - Azevedo do Nascimento, A. A1 - Trappe, Volker A1 - Diniz Melo, J. D. A1 - Cysne Barbosa, A. P. T1 - Fatigue behavior of self-healing glass fiber/epoxy composites with addition of poly (ethylene-co-methacrylic acid) (EMAA) N2 - The interest in repair technologies for polymer composites has increased significantly over the last decades, due to the growing use of these materials in structural applications. In this study, poly (ethylene-co-methacrylic acid) (EMAA) was used as self-healing agent to glass fiber/epoxy composite. Materials with EMAA contents of 2 wt% and 5 wt% were manufactured using Resin Transfer Molding (RTM) and the effects of the healing agent on the properties were investigated using tensile tests and Dynamic Mechanical Analysis (DMA). Results show slight variation of properties, which was more pronounced as the content of EMAA increased. In addition, the healing efficiency was investigated through fatigue tests and the addition of higher content of EMAA increased the number of cycles to failure after the healing activation cycle. KW - Fatigue KW - Glass fiber-epoxy composites KW - Self-healing KW - Smart materials PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-569661 SN - 0142-9418 VL - 117 SP - 1 EP - 10 PB - Elsevier Ltd. AN - OPUS4-56966 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ghafafian, Carineh A1 - Trappe, Volker T1 - Prolonging structural integrity—Fatigue of scarf repairs for wind turbine blade shell applications N2 - The influence of scarf repair variables on the mechanical properties of glass fiber reinforced polymer sandwich structures is examined for the application of wind turbine blade shell repairs. Reference shell specimens are tested under fully-reversed cyclic loading to understand the fatigue behavior of the sub-component structure within a range of in-service loads, to which shell specimens with a scarf joint repair are compared. A fatiguesuperior repair material is shown to improve the fatigue behavior of the repaired structures compared to the reference specimens. In separating layup and geometry, damage development is examined on the subcomponent scale for a structural understanding of a scarf repair using in-situ digital image correlation-based strain field measurements as well as passive thermography. Within scarf repair variables, the geometry is shown to play a larger role than layup in the fatigue performance of the repaired structure. KW - Polymer–matrix composites KW - Fatigue KW - Joints/joining PY - 2023 U6 - https://doi.org/10.1016/j.compositesa.2022.107419 SN - 1359-835X VL - 167 SP - 1 EP - 11 PB - Elsevier Ltd. AN - OPUS4-56942 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -