TY - CONF A1 - Adam, Christian A1 - Herzel, Hannes T1 - R-Rhenania - Modifiziertes Rhenaniaphosphat aus Klärschlammasche für Bayern N2 - Vorstellung des Projektstands R-Rhenania aus der Förderinitiative RePhoR des BMBF. T2 - DPP FORUM 2022: Phosphor Recycling 2029 Etappenziel erreicht? CY - Frankfurt a.M., Germany DA - 13.10.2022 KW - Phosphorrückgewinnung KW - Klärschlammasche KW - thermochemische Behandlung PY - 2022 AN - OPUS4-55980 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Adam, Christian A1 - Herzel, Hannes T1 - R-Rhenania - Modifiziertes Rhenania Phosphat aus Klärschlammasche für Bayern N2 - In Bayern wird Klärschlamm aus der kommunalen Abwasserreinigung weitgehend verbrannt. Monoverbrennungsanlagen - ausschließlich für kommunalen Klärschlamm - gibt es in Altenstadt, München, Gendorf, Straubing, Neu-Ulm und zukünftig auch in Augsburg. Die Anlage in Altenstadt verbrennt jährlich ca. 55.000 t Klärschlamm-Trockensubstanz und produziert dabei rund 15.000 t phosphatreiche Aschen. Die Asche aus Altenstadt wird zurzeit überwiegend direkt landwirtschaftlich genutzt. Aufgrund der niedrigen Schadstoffgehalte ist diese Nutzung nach den düngemittelrechtlichen Regelungen gesetzlich zulässig. Um der Intention der neuen Düngeverordnung (26. Mai 2017) nach hocheffizienten, d.h. gut pflanzenverfügbaren Düngemitteln zu entsprechen, ist eine Aufbereitung der Klärschlammasche geplant. Im Rahmen des R-Rhenania Projektes errichten der Betreiber der Klärschlammverbrennungsanlage Altenstadt in Bayern Emter GmbH - und der Düngemittelhersteller sePura GmbH gemeinsam eine AshDec®-Demonstrationsanlage, die im Jahr 2023 den Betrieb aufnehmen soll. Das angewandte AshDec®-Verfahren schließt die Phosphate in der Klärschlammasche thermisch im Drehrohrofen auf und macht diese für Pflanzen vollständig verfügbar. Gleichzeitig werden Schadstoffe wie Arsen, Blei und Cadmium entfernt. Den thermischen Aufschluss kennt man bereits vom erfolgreichen, aber nicht mehr produzierten Düngemittel „Rhenania-Phosphat“, das auf der Basis von Rohphosphaten hergestellt wurde. Die geplante Anlage wird neben den Aschen aus Altenstadt zusätzlich die Aschen aus weiteren bayerischen Verbrennungsanlagen verwerten und für eine Kapazität von 30.000 Jahrestonnen Asche ausgelegt sein. Der Projektpartner sePura plant den produzierten Dünger vollständig in Bayern zu verwerten. Dies verringert die Umweltbelastung durch lange Transportwege und fördert die Regionalität des Vorhabens. T2 - RePhoR Auftaktveranstaltung CY - Online meeting DA - 03.11.2020 KW - Klärschlammasche PY - 2020 AN - OPUS4-51608 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Adam, Christian A1 - Herzel, Hannes T1 - R-Rhenania - Modifiziertes Rhenania Phosphat aus Klärschlammasche für Bayern N2 - Im Verbundprojekt R-Rhenania wird eine industrielle Demonstrationsanlage am Standort der Monoverbrennungsanlage Altenstadt der Firma Emter errichtet und im Jahr 2024 den Betrieb aufnehmen. Die vorhandene Rostfeuerung-Monoverbrennung wird so umgebaut, dass ein neues thermochemisches Verfahren integriert werden kann, welches hochwirksame und schadstoffarme Dünger produziert (bis zu 17.000 t/a). Die thermochemischen Produkte werden in Gefäß- und Feldversuchen im ökologischen Landbau auf ihre Düngewirkung getestet. Die Umweltverträglichkeit der Demonstrationsanlage wird untersucht, wie auch die Übertragbarkeit des Verfahrens auf weitere Regionen. T2 - Statusseminar RePhoR CY - Frankfurt am Main, Germany DA - 03.05.2023 KW - Phosphor KW - Monoverbrennung KW - Recycling KW - Nährstoffe KW - Dünger PY - 2023 AN - OPUS4-59486 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schraut, Katharina A1 - Adam, Christian A1 - Adamczyk, Burkart A1 - Simon, Sebastian A1 - von Werder, Julia A1 - Meng, Birgit A1 - Stephan, Dietmar T1 - Production of an alite-rich material from reduced basic oxygen furnace slags N2 - Basic oxygen furnace slag (BOFS) is a by-product of steelmaking of which about 10.4 Mt are produced annually in the EU. BOFS is mostly used in road construction, earthwork and hydraulic engineering. However, in this use, the iron bound in BOFS is lost and the opportunity to produce higher value products from BOFS is forgone. In recent decades, many researchers have investigated the production of both Portland cement clinker and crude iron from BOFS via a thermochemical reductive treatment. The reductive treatment of liquid BOFS causes a reduction of iron oxides to metallic iron, which separates from the mineral phase due to its higher density and can be recovered. An advantage of this process is that simultaneously the chemical composition of the reduced BOFS is adapted to that of Portland cement clinker and the hydraulic reactive mineral alite (Ca3SiO5) is formed. In this study, German BOFS was reduced in a small-scale electric arc furnace and a low-iron mineral product rich in alite was produced. Despite a chemical and mineralogical composition similar to that of Portland cement clinker, the reduced BOFS produced less heat of hydration, and its reaction was delayed compared to Portland cement. However, adding gypsum accelerated the hydration rate of the reduced BOFS. Further research to improve the hydraulic properties of the reduced BOFS is essential. If successful, the production of a hydraulic material and crude iron from BOFS could have economic and ecological benefits for both the cement and steel industry. T2 - GeoBerlin 2023 CY - Berlin, Germany DA - 04.09.2023 KW - BOFS KW - Alite KW - Hydraulic reactivity PY - 2023 AN - OPUS4-58206 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schraut, Katharina A1 - Adamczyk, Burkart A1 - Adam, Christian A1 - Stephan, D. A1 - Simon, Sebastian A1 - von Werder, Julia A1 - Meng, Birgit T1 - Production of a hydraulic material from post-treated steelmaking slags N2 - Steelmaking slag is a by-product of steel production of which 4.5 Mt were produced in 2020 in Germany alone. It is mainly used in road construction, earthwork and hydraulic engineering. A smaller part is returned to the metallurgical circle, used as fertilizer or landfilled. With this use, iron oxides still contained in steelmaking slag are lost. In addition, the possibility of producing higher-grade products from steelmaking slag is foregone. In recent decades, many researchers have investigated the production of Portland cement clinker and crude iron from basic oxygen furnace slags (BOFS) via a reductive treatment. Carbothermal treatment of liquid BOFS causes a reduction of iron oxides to metallic iron, which separates from the mineral phase due to its higher density. Simultaneously, the chemical composition of the reduced slag is adapted to that of the Portland cement clinker. In this study, German BOFS was reduced in a small-scale electric arc furnace using petrol coke as a reducing agent. The resulting low-iron mineral product had a similar chemical composition to Portland cement clinker and was rich in the tricalcium silicate solid solution alite (Ca3SiO5). Based on its chemical and mineralogical composition, similar to that of Portland cement clinker, the reduced BOFS has the potential to react comparably. In our study, the reduced BOFS produced less heat of hydration compared to OPC and its hydraulic reaction was delayed. However, adding gypsum has been shown to accelerate the hydration rate of the reduced BOFS compared to that known from the calcium silicates of Portland cement clinker. Further research to improve the hydraulic properties of the reduced slag is essential. If successful, producing a hydraulic binder and crude iron from BOFS could have economic and ecological benefits for both the cement and steel industry. T2 - 16th International Congress on the Chemistry of Cement ICCC 2023 CY - Bangkok, Thailand DA - 18.09.2023 KW - Steelmaking slag KW - Alite hydraulic reactivity KW - Clinker substitute PY - 2023 AN - OPUS4-58522 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF ED - Schraut, Katharina ED - Adamczyk, Burkart ED - Adam, Christian ED - Stephan, D. ED - Simon, Sebastian ED - von Werder, Julia ED - Meng, Birgit T1 - Production of a hydraulic material from post treated steelmaking slags N2 - Steelmaking slag is a by-product of steel production, of which 4.5 Mt were produced in 2020 in Germany alone. It is mainly used in road construction, earthwork and hydraulic engineering. A smaller part is returned to the metallurgical cycle, used as fertiliser or landfilled. With this use, iron oxides still contained in steelmaking slag are lost. In addition, the possibility of producing higher-grade products from steelmaking slag is foregone. In recent decades, many researchers have investigated the production of Portland cement clinker and crude iron from basic oxygen furnace slags (BOFS) via a reductive treatment. Carbothermal treatment of liquid BOFS causes a reduction of iron oxides to metallic iron, which separates from the mineral phase due to its higher density. Simultaneously, the chemical composition of the reduced slag is adapted to that of Portland cement clinker. In this study, German BOFS was reduced in a small-scale electric arc furnace using petrol coke as a reducing agent. The resulting low-iron mineral product has a similar chemical composition to Portland cement clinker and was rich in the tricalcium silicate solid solution alite (Ca3SiO5). Based on its chemical and mineralogical composition, similar to that of Portland cement clinker, the reduced BOFS has the potential to react comparably. In our study, the reduced BOFS produced less hydration heat than OPC, and its hydraulic reaction was delayed. However, adding gypsum has shown to accelerate the hydration rate of the reduced BOFS compared to that known from the calcium silicates of Portland cement clinker. Further research to improve the hydraulic properties of the reduced slag is essential. If successful, producing a hydraulic binder and crude iron from BOFS has economic and ecological benefits for both the cement and steel industries. T2 - The 16th International Congress on the Chemistry of Cement 2023 (ICCC2023) CY - Bangkok, Thailand DA - 18.09.2023 KW - Steelmaking slag KW - Alite KW - Clinker substitute KW - Hydraulic reactivity PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-590522 UR - https://www.iccc-online.org/archive/ SP - 432 EP - 436 CY - Bangkok AN - OPUS4-59052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Smol, M. A1 - Adam, Christian T1 - Possibility of recovering phosphorus from sewage sludge ash (SSA) in Poland N2 - Due to the vital importance of phosphorus (P) and its increasing scarcity as a natural resource, phosphorus recovery has recently gained significant scientific and technical interest. An interesting sources of phosphorus are sewage sludge (SS) and sewage sludge ash (SSA) due to the major part of the phosphate from P rich wastewater is transferred to the sludge (approx. 90%). Despite the fact that the raw materials base is large (PURE report indicates that in 2020 the amount of sewage sludge generated in Poland will reach 180% of the dry matter of sewage sludge produced in 2010), at present recycling of phosphorus is not a commonly used practice in Poland. T2 - International Phosphorus Workshop 9 CY - Zurich, Switzerland DA - 08.07.2019 KW - Sewage sludge ash KW - Phosphorus recovery PY - 2019 AN - OPUS4-48616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schraut, Katharina A1 - Adamczyk, Burkart A1 - Simon, Sebastian A1 - von Werder, Julia A1 - Meng, Birgit A1 - Stephan, Dietmar A1 - Adam, Christian T1 - Portland cement clinker from reduced basic oxygen furnace slag N2 - Basic oxygen furnace slag (BOFS) is a by-product of the steelmaking process, of which about 10.4 Mt are produced annually in the European Union. Besides its predominant use in road construction, earthwork, and hydraulic engineering, it is also possible to use BOFS as a source material for Portland cement clinker. The main difference in the chemical composition of BOFS from the chemical composition of Portland cement clinker is its high content of iron oxides (7-50 wt.%). In recent decades, many researchers have investigated the production of both Portland cement clinker and crude iron from BOFS via thermochemical reductive treatment. Carbothermal treatment of liquid BOFS causes reduction of iron oxides to metallic iron, which separates from the mineral phase due to its higher density. In this study, German BOFS was reduced in a small-scale electric arc furnace using petrol coke as reducing agent. The produced low-iron mineral product was chemically similar to Portland cement clinker and contained the most important Portland cement mineral alite (Ca3SiO5) as main component. Besides alite, the mineral product contained other Portland cement clinker constituents such as belite (β-Ca2SiO4) and tricalcium aluminate (Ca3Al2O6). The production of Portland cement clinker and crude iron from BOFS has economic and ecological benefits for both the cement and steel industry. Cement clinker from reduced BOFS may be used as a substitute for cement clinker from conventional cement production, thereby CO2 emissions will be reduced. The steel industry benefits from a high-value application for its by-products that avoids cost expensive landfilling and may even bring economic advantages. However, reductive treatment requires high temperatures and, for economic reasons, has to be carried out immediately after casting of the liquid BOFS, which is a logistical challenge for most steel plants. A cost-benefit analysis is therefore essential. T2 - European Congress and Exhibition on Advanced Materials and Processes CY - Online meeting DA - 13.09.2021 KW - BOFS KW - Portland Cement KW - Hydraulic reactivity PY - 2021 AN - OPUS4-53475 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Raniro, H.R. A1 - Teles, A.P. A1 - Pavinato, P.S. A1 - Adam, Christian T1 - Phosphorus solubility and dynamics in a tropical soil under sources derived from wastewater and sewage sludge N2 - Conventional phosphate fertilizers are usually highly water-soluble and rapidly solubilize when moistened by the soil solution. However, if this solubilization is not in alignment with plants demand, P can react with the soil colloidal phase, becoming less available over time. This is more pronounced in acidic, oxidic tropical soils, with high P adsorption capacity, reducing the efficiency of P fertilization. Furthermore, these fertilizers are derived from phosphate rock, a non-renewable resource, generating an environmental impact. To assess these concerns, waste-recycled P sources (struvite, hazenite and AshDec®) were studied for their potential of reducing P Fixation by the soil and improving the agronomic efficiency of the P fertilization. In our work, we compared the solubilization dynamics of struvite, hazenite, AshDec® to triple superphosphate (TSP) in a sandy clay loam Ferralsol, as well as their effect on solution pH and on soil P pools (labile, moderately-labile and non-labile) via an incubation experiment. Leaching columns containing 50 g of soil with surface application of 100 mg per column (mg col􀀀 1) of P from each selected fertilizer and one control (nil-P) were evaluated for 60 days. Daily leachate samples from the column were analyzed for P content and pH. Soil was stratified in the end and submitted to P fractionation. All results were analyzed considering p < 0.05. Our findings showed that TSP and struvite promoted an acid P release reaction (reaching pHs of 4.3 and 5.5 respectively), while AshDec® and hazenite reaction was alkaline (reaching pHs of 8.4 and 8.5 respectively). Furthermore, TSP promoted the highest P release among all sources in 60 days (52.8 mg col􀀀 1) and showed rapid release dynamic in the beginning, while struvite and hazenite showed late release dynamics and lower total leached P (29.7 and 15.5 mg col􀀀 1 P respectively). In contrast, no P-release was detected in the leachate of the AshDec® over the whole trial period. Struvite promoted the highest soil labile P concentration (7938 mg kg􀀀 1), followed by hazenite (5877 mg kg􀀀 1) and AshDec® (4468 mg kg􀀀 1), all higher than TSP (3821 mg kg􀀀 1), while AshDec® showed high moderately-labile P (9214 mg kg􀀀 1), reaffirming its delayed release potential. KW - Phosphate dynamics KW - Struvite KW - Wastewater KW - Sewage sludge ash KW - CaNaPO4 KW - P speciation PY - 2022 DO - https://doi.org/10.1016/j.jenvman.2021.113984 VL - 302 IS - Part A SP - 113984 PB - Elsevier Ltd. AN - OPUS4-53600 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Adam, Christian A1 - Herzel, Hannes T1 - Phosphorus recovery in Germany – recent developments N2 - The recent developments of phosphorus recovery in Germany were presented. The funding program RePhoR was introduced with focus on the demonstration project R-Rhenania that is coordinated by BAM. T2 - Green Deal 2020 conference CY - Online-Meeting DA - 14.12.2020 KW - Phopshorus recovery KW - Waste water treatment KW - Recycling fertiliser PY - 2020 AN - OPUS4-51837 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -