TY - CONF A1 - Vogel, Christian A1 - Huang, L. T1 - Ammonium and nitrate in agricultural soils analyzed with the Diffusive Gradients in Thin-films technique N2 - The aim of this study was to investigate the passive sampler method Diffusive Gradients in Thin-films (DGT) for ammonium and nitrate in amended soils. Therefore, we used soils from a pot experiment with maize where nitrogen (N) was supplied as ammonium sulfate nitrate (ASN), without and with a nitrification inhibitor (NI). The additional use of a NI can delay the nitrification in the soil and making the ammonium available for a longer period in the soil solution after its application. Homogenized soil samples were collected directly from each pot after one week of incubation before sowing and after harvesting the maize. Nitrate and ammonium in these soil samples were extracted using DGT devices equipped with a Putolite A520E (for nitrate) and Microlite PrCH (for ammonium) binding layer. Ammonium DGT which determined the mobile and labile ammonium forms based on diffusion and the resupplies from the solid soil phase, only showed a significantly higher amount of extractable ammonium with NI compared to that without NI for some samples. However, significantly lower values were found for nitrate of treatments with NI compared to without NI after harvest. Thus, the lower nitrate amounts for treatments with NI compared to the treatments without NI after harvest indicated the delay of the nitrification process by the NI. Furthermore, we compared also the ammonium and nitrate DGT results to chemical extraction with KCl solutions. The results demonstrated that the trends of DGT results and chemical extraction were complimentary through all the treatments. T2 - International Passive Sampling Workshop (IPSW) 2021 virtual CY - Online meeting DA - 04.11.2021 KW - Phosphorus KW - Diffusive gradients in thin-films (DGT) KW - Ammonium KW - Nitrate PY - 2021 AN - OPUS4-53698 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Doolette, A. A1 - Huang, J. T1 - Combining diffusive gradients in thin-films (DGT) and 31P NMR spectroscopy to determine phosphorus species in soil JF - Agricultural & Environmental Letters N2 - The diffusive gradients in thin-films (DGT) technique shows in many publications a superior correlation to the amount of plant-available phosphorus (P) in soil. However, this technique cannot give information on the plant-available P species in soil. Therefore, we combined DGT with solution 31P nuclear magnetic resonance (NMR) spectroscopy. This was achieved by using a modified DGT device in which the diffusive layer had a larger pore size, the binding layer incorporated an adsorption material with a higher capacity, and the device had a larger exposure area. The spectroscopic investigation was undertaken after elution of the deployed DGT binding layer in a NaOH solution. Adsorption tests using solutions of known organic P compounds showed that a sufficient amount of these compounds could be adsorbed on the binding layer in order for them to be analyzed by solution 31P NMR spectroscopy. Furthermore, various intermediates of the hydrolysis of trimetaphosphate in soil could be also analyzed over time. KW - Phosphorus KW - Diffusive gradients in thin-films (DGT) KW - Passive sampling KW - fertilizer PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545759 DO - https://doi.org/10.1002/ael2.20068 VL - 7 IS - 1 SP - e20068 PB - Wiley online library AN - OPUS4-54575 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -