TY - JOUR A1 - Machado Ferreira de Araujo, F. A1 - Duarte-Ruiz, D. A1 - Saßnick, H.-D. A1 - Gentzmann, Marie C. A1 - Huthwelker, T. A1 - Cocchi, C. T1 - Electronic Structure and Core Spectroscopy of Scandium Fluoride Polymorphs N2 - Microscopic knowledge of the structural, energetic, and electronic properties of scandium fluoride is still incomplete despite the relevance of this material as an intermediate for the manufacturing of Al−Sc alloys. In a work based on first-principles calculations and X-ray spectroscopy, we assess the stability and electronic structure of six computationally predicted ScF3 polymorphs, two of which correspond to experimentally resolved single-crystal phases. In the theoretical analysis based on density functional theory (DFT), we identify similarities among the polymorphs based on their formation energies, chargedensity distribution, and electronic properties (band gaps and density of states). We find striking analogies between the results obtained for the ow- and high-temperature phases of the material, indirectly confirming that the transition occurring between them mainly consists of a rigid rotation of the lattice. With this knowledge, we examine the X-ray absorption spectra from the Sc and F K-edge contrasting firstprinciples results obtained from the solution of the Bethe−Salpeter equation on top of all-electron DFT with high-energy-resolution fluorescence detection measurements. Analysis of the computational results sheds light on the electronic origin of the absorption maxima and provides information on the prominent excitonic effects that characterize all spectra. A comparison with measurements confirms that the sample is mainly composed of the high- and low-temperature polymorphs of ScF3. However, some fine details in the experimental results suggest that the probed powder sample may contain defects and/or residual traces of metastable polymorphs. KW - Scandium KW - X-ray spectroscopy PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570727 DO - https://doi.org/10.1021/acs.inorgchem.2c04357 SN - 0020-1669 VL - 62 IS - 10 SP - 4238 EP - 4247 PB - ACS Publications CY - Washington DC AN - OPUS4-57072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gentzmann, Marie A1 - Schraut, Katharina A1 - Vogel, Christian A1 - Gäbler, H.-E. A1 - Huthwelker, T. A1 - Adam, Christian T1 - Investigation of scandium in bauxite residues of different origin N2 - This paper focuses on the scandium speciation in bauxite residues of different origin. Insights into mineralchemical similarities and differences of these materials will be presented and links to their natural geological background discussed. The presented research should provide fundamental knowledge for the future development of efficient and viable technologies for Sc-recovery from bauxite residues derived from different bauxites and accumulating at different localities. In total, five bauxite residues were investigated which originated from Greece, Germany, Hungary and Russia (North Ural & North Timan) using a combination of different analytical tools. Those included: laser ablation inductively coupled plasma mass spectrometry, X-ray absorption near Edge structure (XANES) spectroscopy, μ-Raman spectroscopy as well as scanning electron microscopy and electron microprobe analyses. X-ray fluorescence and inductively coupled plasma mass spectrometry were used to determine the overall chemical composition. The investigated samples were found to exhibit a relatively homogenous distribution of Sc between the larger mineral particles and the fine-grained matrix except for Al-phases like diaspore, boehmite and gibbsite. These phases were found to be particularly low in Sc. The only sample where Sc mass fractions in Al-phases exceeded 50 mg/kg was the Russian sample from North Ural. Fe-phases such as goethite, hematite and chamosite (for Russian samples) were more enriched in Sc than the Al-phases. In fact, in Greek samples goethite showed a higher capacity to incorporate or adsorb Sc than hematite. Accessory minerals like zircon, rutile/anatase and ilmenite were found to incorporate higher mass fractions of Sc (>150 mg/kg), however, those minerals are only present in small amounts and do not represent major host phases for Sc. In Russian samples from North Ural an additional Ca–Mg rich phase was found to contain significant mass fractions of Sc (>500 mg/kg). μ-XANES spectroscopy was able to show that Sc in bauxite residue occurs adsorbed onto mineral surfaces as well as incorporated into the crystal lattice of certain Fe-phases. According to our observations the bauxite type, i.e. karstic or lateritic, the atmospheric conditions during bauxitization, i.e. oxidizing or reducing, and consequently the dominant Sc-bearing species in the primary Bauxite influence the occurrence of Sc in bauxite residues. In karstic bauxites, underlying carbonate rocks can work as a pH-barrier and stabilize Sc. This prevents the Sc from being mobilized and removed during bauxitization. Hence, karstic bauxites are more prone to show a Sc enrichment than lateritic bauxites. Reducing conditions during bauxitization support the incorporation of Sc into clay minerals such as chamosite, which can dissolve and reprecipitate during Bayer processing causing Sc to be redistributed and primarily adsorb onto mineral surfaces in the bauxite residue. Oxidizing conditions support the incorporation of Sc into the crystal lattice of Fe-oxides and hydroxides, which are not affected in the Bayer process. The genetic history of the bauxite is therefore the major influential factor for the Sc occurrence in bauxite residues. KW - Sc recovery KW - Scandium KW - Bauxite Residue KW - Red Mud KW - XANES PY - 2021 DO - https://doi.org/10.1016/j.apgeochem.2021.104898 SN - 0883-2927 VL - 126 SP - 104898 PB - Elsevier Ltd. AN - OPUS4-52123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gentzmann, Marie A1 - Paul, Andrea A1 - Serrano, Juan A1 - Adam, Christian T1 - Understanding scandium leaching from bauxite residues of different geological backgrounds using statistical design of experiments N2 - The leaching behavior of scandium (Sc) from bauxite residues can differ significantly when residues of different geological backgrounds are compared. The mineralogy of the source rock and the physicochemical environment during bauxitization affect the association of Sc in the bauxite i.e., how Sc is distributed amongst different mineral phases and whether it is incorporated in and/or adsorbed onto those phases. The Sc association in the bauxite is in turn crucial for the resulting Sc association in the bauxite residue. In this study systematic leaching experiments were performed on three different bauxite residues using a statistical design of experiments approach. The three bauxite residues compared originated from processing of lateritic and karstic bauxites from Germany, Hungary, and Russia. The recovery of Sc and Fe was determined by ICP-OES measurements. Mineralogical changes were analyzed by X-ray-diffraction and subsequent Rietveld refinement. The effects of various parameters including temperature, acid type, acid concentration, liquid-to-solid ratio and residence time were studied. A response surface model was calculated for the selected case of citric acid leaching of Hungarian bauxite residue. The investigations showed that the type of bauxite residue has a strong influence. The easily leachable fraction of Sc can vary considerably between the types, reaching ~20–25% in German Bauxite residue and ~50% in Russian bauxite residue. Mineralogical investigations revealed that a major part of this fraction was released from secondary phases such as cancrinite and katoite formed during Bayer processing of the bauxite. The effect of temperature on Sc and Fe recovery is strong especially when citric acid is used. Based on the exponential relationship between temperature and Fe-recovery it was found to be particularly important for the selectivity of Sc over Fe. Optimization of the model for a maximum Sc recovery combined with a minimum Fe recovery yielded results of ~28% Sc recovery at <2% Fe recovery at a temperature of 60 ◦C, a citric acid normality of 1.8, and a liquid-to-solid ratio of 16 ml/g. Our study has shown that detailed knowledge about the Sc association and distribution in bauxite and bauxite residue is key to an efficient and selective leaching of Sc from bauxite residues. KW - Bauxite residue KW - Scandium KW - Leaching KW - Design of experiments KW - Red mud PY - 2022 DO - https://doi.org/10.1016/j.gexplo.2022.107041 SN - 0375-6742 VL - 2022 IS - 240 SP - 1 EP - 13 PB - Elsevier Science CY - Amsterdam AN - OPUS4-55531 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -