TY - JOUR A1 - Kratz, S. A1 - Vogel, Christian A1 - Adam, Christian T1 - Agronomic performance of P recycling fertilizers and methods to predict it: a review N2 - Phosphorus (P) is an essential element for all life forms, and P-availability thus an important driver of a functioning agriculture. However, phosphate rock resources for P-fertilizer production are only available in a few countries. Therefore, P-recovery from waste materials has become of increasing interest during the last decade and has been investigated worldwide. In order to characterize potential novel P-fertilizers made from recycled materials, a large array of P-compound characterizations, chemical extractions and growth experiments were performed. This review bundles the work carried out in that field over the last years. Overall, P-fertilizers from recycled materials show a broad range of P-compounds with very different chemical structure and solubility. Growth experiments performed to assess their fertilizing effects display high variations for most of the products. While these experiments have demonstrated that some fertilizers made of recycled materials may reach P effects in the same order of magnitude as water-soluble phosphate rock-based fertilizers, an important limitation in their interpretation is the fact that they often vary considerably in their experimental design. The existing data show clearly that standardization of growth experiments is urgently needed to achieve comparable results. Standard chemical extractants used to assess the chemical solubility of P-fertilizers were found to be of limited reliability for predicting plant P uptake. Therefore, alternative methods such as sequential fractionation, or the extraction of incubated soil/fertilizer mixtures with standard soil extractants or with P sink methods should be tested more intensively in the future to provide alternative options to predict the P-availability of fertilizers from recycled materials. KW - Recycling fertilizer KW - Phosphorus KW - Chemical extraction methods KW - Agronomic performance KW - Incubated soil/fertilizer mixtures KW - P sink method KW - Diffusive gradients in thin films (DGT) PY - 2019 U6 - https://doi.org/10.1007/s10705-019-10010-7 SN - 1385-1314 SN - 1573-0867 VL - 115 IS - 1 SP - 1 EP - 39 PB - Springer AN - OPUS4-48713 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Sekine, R. A1 - Steckenmesser, D. A1 - Lombi, E. A1 - Herzel, Hannes A1 - Zuin, L. A1 - Wang, D. A1 - Felix, R. A1 - Adam, Christian T1 - Combining diffusive gradients in thin films (DGT) and spectroscopic techniques for the determination of phosphorus species in soils N2 - A wide range of methods are used to estimate the plant-availability of soil phosphorus (P). Published research has shown that the diffusive gradients in thin films (DGT) technique has a superior correlation to plant-available P in soils compared to standard chemical extraction tests. In order to identify the plantavailable soil P species, we combined DGT with infrared and P K- and L2,3-edge X-ray adsorption near edge structure (XANES) spectroscopy. This was achieved by spectroscopically investigating the dried binding layer of DGT devices after soil deployment. All three spectroscopic methods were able to distinguish between different kinds of phosphates (poly-, trimeta-, pyro- and orthophosphate) on the DGT binding layer. However, infrared spectroscopy was most sensitive to distinguish between different types of adsorbed inorganic and organic phosphates. Furthermore, intermediates of the time-resolved hydrolysis of trimetaphosphate in soil could be analyzed. KW - Phosphorus plant-availability KW - X-ray adsorption near-edge structure (XANES) spectroscopy KW - Infrared spectroscopy KW - Diffusive gradients in thin films (DGT) PY - 2019 U6 - https://doi.org/10.1016/j.aca.2019.01.037 SN - 0003-2670 VL - 1057 SP - 80 EP - 87 PB - Elsevier AN - OPUS4-47471 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Sekine, R. A1 - Huang, J. A1 - Steckenmesser, D. A1 - Steffens, D. A1 - Huthwelker, T. A1 - Borca, C. A1 - Pradas del Real, A. A1 - Castillo-Michel, H. A1 - Adam, Christian T1 - Effects of a nitrification inhibitor on nitrogen species in the soil and the yield and phosphorus uptake of maize N2 - Phosphorus (P) resource availability is declining and the efficiency of applied nutrients in agricultural soils is becoming increasingly important. This is especially true for P fertilizers from recycled materials, which often have low plant availability. Specific co-fertilization with ammoniumcan enhance P plant availability in soils amended with these P fertilizers, and thus the yield of plants. To investigate this effect, we performed a pot experiment with maize in slightly acidic soil (pH 6.9) with one water-soluble (triple superphosphate [TSP]) and two water-insoluble (sewage sludge-based and hyperphosphate [Hyp]) P fertilizers and anammoniumsulfate nitrate with or without a nitrification inhibitor (NI). The dry matter yield of maize was significantly increased by the NI with the Hyp (from 14.7 to 21.5 g/pot) and TSP (from 40.0 to 45.4 g/pot) treatments. Furthermore, P uptake was slightly increased in all three P treatments with the NI, but not significantly. Olsen-P extraction and P K-edge micro-X-ray absorption near-edge structure (XANES) spectroscopy showed that apatite-P of the water insoluble P fertilizers mobilized during the plant growth period. In addition, novel nitrogen (N) K-edge micro-XANES spectroscopy and the Mogilevkina method showed that the application of an NI increased the fixation of ammonium in detectable hot spots in the soil. Thus, the delay in the nitrification process by the NI and the possible slow-release of temporarily fixed ammoniumin the soil resulted in a high amount of plant available Ammonium in the soil solution. This development probably decreases the rhizosphere pH due to release of H+ by plants during ammoniumuptake, whichmobilizes phosphorus in the amended soil and increases the dry matter yield of maize. This is especially important for water-insoluble apatite-based P fertilizers (conventional and recycled), which tend to have poor plant availability. KW - Fertilzer KW - Phosphorus recovery KW - Ammonium KW - Nitrification inhibitor KW - XANES spectroscopy KW - Diffusive gradients in thin films (DGT) PY - 2020 U6 - https://doi.org/10.1016/j.scitotenv.2020.136895 SN - 1879-1026 VL - 715 SP - 1 EP - 8 PB - Elsevier CY - Amsterdam AN - OPUS4-50477 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -