TY - JOUR A1 - Vogel, Christian A1 - Doolette, A. A1 - Huang, J. T1 - Combining diffusive gradients in thin-films (DGT) and 31P NMR spectroscopy to determine phosphorus species in soil N2 - The diffusive gradients in thin-films (DGT) technique shows in many publications a superior correlation to the amount of plant-available phosphorus (P) in soil. However, this technique cannot give information on the plant-available P species in soil. Therefore, we combined DGT with solution 31P nuclear magnetic resonance (NMR) spectroscopy. This was achieved by using a modified DGT device in which the diffusive layer had a larger pore size, the binding layer incorporated an adsorption material with a higher capacity, and the device had a larger exposure area. The spectroscopic investigation was undertaken after elution of the deployed DGT binding layer in a NaOH solution. Adsorption tests using solutions of known organic P compounds showed that a sufficient amount of these compounds could be adsorbed on the binding layer in order for them to be analyzed by solution 31P NMR spectroscopy. Furthermore, various intermediates of the hydrolysis of trimetaphosphate in soil could be also analyzed over time. KW - Phosphorus KW - Diffusive gradients in thin-films (DGT) KW - Passive sampling KW - fertilizer PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-545759 VL - 7 IS - 1 SP - e20068 PB - Wiley online library AN - OPUS4-54575 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steckenmesser, D. A1 - Vogel, Christian A1 - Herzel, Hannes A1 - Félix, R. A1 - Adam, Christian A1 - Steffens, D. T1 - Thermal treatment of sewage sludge for phosphorus fertilizer production: a model experiment N2 - Phosphorus (P) resource availability and quality is declining and recycling P-fertilizers from waste materials are becoming increasingly important. One important secondary P resource is sewage sludge (SSL) where P is often bound as aluminum phosphate (Al-P), iron phosphate (Fe-P) and polyphosphate (poly-P), respectively. Thermal treatment in different ways is a promising way in P recycling to produce highly plant-available P-fertilizers. To investigate mechanisms behind transformation of hardly available P-species toward plant-available P forms we treated a model SSL containing different kinds of defined P sources by low-temperature conversion (LTC) at 500 °C and subsequent thermochemical treatment of the LTC product with Na additives (TCT) at 950 °C, respectively. Pot experiments with ryegrass were carried out to determine the plant availability of P of the different treatments. The poly-P (here pyrophosphates) based fertilizers had a very high plant availability after both thermal treatments. During LTC treatment the plant availability of the Fe-P and Al-P variants increased because of the Formation of Fe(II) phosphates and/or pyro-/polyphosphates. Especially the formation of Al-polyphosphate shows a high plant availability. The subsequent TCT further increased strongly the plant availability of the Fe-P variants because of the formation of highly plant-available CaNaPO4. Thus, a direct TCT without prior LTC probably also produce CaNaPO4 and is recommended for Fe-P based SSL. However, a molar Ca/P ratio of � 1 in the fertilizer is favorable for CaNaPO4 formation. Thus, the knowledge on the source of primary P in SSL is essential for choosing the accurate thermal treatment method to produce highly plant-available P-fertilizers from SSL. KW - Phosphorus KW - Sewage sludge KW - X-ray diffraction KW - X-ray absorption near-edge structure (XANES) spectroscopy KW - Fertilizer PY - 2021 U6 - https://doi.org/10.1080/01904167.2021.1994595 SN - 0190-4167 VL - 45 IS - 8 SP - 1123 EP - 1133 PB - Taylor & Francis Online AN - OPUS4-53755 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steckenmesser, D. A1 - Vogel, Christian A1 - Böhm, L. A1 - Heyde, B. A1 - Adam, Christian T1 - Fate of heavy metals and polycyclic aromatic hydrocarbons (PAH) in sewage sludge carbonisates and ashes – A risk assessment to a thermochemical phosphorus-recycling process N2 - In the near future, phosphorus (P) recycling will gain importance in terms of decreasing primary resources. Sewage sludge (SSL) is an adequate secondary P-resource for P-fertilizer production but it is also a sink for heavy metals and organic pollutants. The present study is an investigation on thermochemical P-recycling of SSL. Various temperatures and amendments were tested regarding their performance to remove heavy metals and polycyclic aromatic hydrocarbons (PAH) and simultaneous increase of the plant-availability of P. The investigations were carried out on two types of SSL originating from wastewater treatment plants with chemical P-precipitation and enhanced biological P-removal, respectively. The results show that thermochemical treatment with chlorine donors is suitable to remove the majority of heavy metals and that a combination of a gaseous chlorine donor (HCl) and sodium additives leads to both high heavy metal removal and high plant availability of P. Furthermore, plant experiments Show that almost all investigated thermochemical treatments can significantly reduce the bioavailability and plant uptake of heavy metals. Furthermore, PAHs are secondarily formed during low-temperature treatments (400–500 ° ), but can be significantly reduced by using sodium carbonate as an additive. KW - Fertilzer KW - Pollutant KW - Phosphorus PY - 2018 U6 - https://doi.org/10.1016/j.wasman.2018.06.027 SN - 0956-053X VL - 78 SP - 576 EP - 587 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-45341 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Helfenstein, J. A1 - Massey, M. A1 - Sekine, R. A1 - Kretzschmar, R. A1 - Beiping, L. A1 - Peter, T. A1 - Chadwick, O. A1 - Tamburini, F. A1 - Rivard, C. A1 - Herzel, Hannes A1 - Adam, Christian A1 - Pradas del Real, A. A1 - Castillo-Michel, H. A1 - Zuin, L. A1 - Wang, D. A1 - Félix, R. A1 - Lassalle-Kaiser, B. A1 - Frossard, E. T1 - Microspectroscopy reveals dust-derived apatite grains in acidic, highly-weathered Hawaiian soils N2 - Dust deposition is an important source of phosphorus (P) to many ecosystems. However, there is little evidence of dust-derived P-containing minerals in soils. Here we studied P forms along a well-described climatic Gradient on Hawaii, which is also a dust deposition gradient. Soil mineralogy and soil P forms from six sites along the climatic gradient were analyzed with bulk (X-ray diffraction and P K-edge X-ray absorption near edge structure) and microscale (X-ray fluorescence, P K-edge X-ray absorption near edge structure, and Raman) analysis methods. In the wettest soils, apatite grains ranging from 5 to 30 μm in size were co-located at the micro-scale with quartz, a known continental dust indicator suggesting recent atmospheric deposition. In addition to co-location with quartz, further evidence of dust-derived P included backward trajectory modeling indicating that dust particles could be brought to Hawaii from the major global dust-loading areas in central Asia and northern Africa. Although it is not certain whether the individual observed apatite grains were derived from long-distance transport of dust, or from local dust sources such as volcanic ash or windblown fertilizer, these observations offer direct evidence that P-containing minerals have reached surface layers of highly-weathered grassland soils through atmospheric deposition. KW - Phosphorus KW - soil KW - microspectroscopy KW - Raman spectroscopy KW - XANES spectroscopy KW - x-ray diffraction PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-511522 SN - 0166-0918 SN - 1872-6259 VL - 381 SP - 114681-1 EP - 114681-11 PB - Elsevier CY - Amsterdam AN - OPUS4-51152 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kratz, S. A1 - Vogel, Christian A1 - Adam, Christian T1 - Agronomic performance of P recycling fertilizers and methods to predict it: a review N2 - Phosphorus (P) is an essential element for all life forms, and P-availability thus an important driver of a functioning agriculture. However, phosphate rock resources for P-fertilizer production are only available in a few countries. Therefore, P-recovery from waste materials has become of increasing interest during the last decade and has been investigated worldwide. In order to characterize potential novel P-fertilizers made from recycled materials, a large array of P-compound characterizations, chemical extractions and growth experiments were performed. This review bundles the work carried out in that field over the last years. Overall, P-fertilizers from recycled materials show a broad range of P-compounds with very different chemical structure and solubility. Growth experiments performed to assess their fertilizing effects display high variations for most of the products. While these experiments have demonstrated that some fertilizers made of recycled materials may reach P effects in the same order of magnitude as water-soluble phosphate rock-based fertilizers, an important limitation in their interpretation is the fact that they often vary considerably in their experimental design. The existing data show clearly that standardization of growth experiments is urgently needed to achieve comparable results. Standard chemical extractants used to assess the chemical solubility of P-fertilizers were found to be of limited reliability for predicting plant P uptake. Therefore, alternative methods such as sequential fractionation, or the extraction of incubated soil/fertilizer mixtures with standard soil extractants or with P sink methods should be tested more intensively in the future to provide alternative options to predict the P-availability of fertilizers from recycled materials. KW - Recycling fertilizer KW - Phosphorus KW - Chemical extraction methods KW - Agronomic performance KW - Incubated soil/fertilizer mixtures KW - P sink method KW - Diffusive gradients in thin films (DGT) PY - 2019 U6 - https://doi.org/10.1007/s10705-019-10010-7 SN - 1385-1314 SN - 1573-0867 VL - 115 IS - 1 SP - 1 EP - 39 PB - Springer AN - OPUS4-48713 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Rivard, C. A1 - Wilken, V. A1 - Muskolus, A. A1 - Adam, Christian T1 - Performance of secondary P-fertilizers in pot experiments analyzed by phosphorus X-ray absorption near-edge structure (XANES) spectroscopy N2 - A pot experiment was carried out with maize to determine the phosphorus (P) plant-availability of different secondary P-fertilizers derived from wastewater. We analyzed the respective soils by P K-edge X-ray absorption near-edge structure (XANES) spectroscopy to determine the P chemical forms that were present and determine the transformation processes. Macro- and micro-XANES spectroscopy were used to determine the chemical state of the overall soil P and identify P compounds in P-rich spots. Mainly organic P and/or P adsorbed on organic matter or other substrates were detected in unfertilized and fertilized soils. In addition, there were indications for the formation of ammonium phosphates in some fertilized soils. However, this effect was not seen in the maize yield of all P-fertilizers. The observed reactions between phosphate from secondary P-fertilizers and cofertilized nitrogen compounds should be further investigated. Formation of highly plant-available compounds such as ammonium phosphates could make secondary P-fertilizers more competitive to commercial phosphate rock-based fertilizers with positive effects on resources conservation. KW - Phosphorus KW - Pot experiments KW - Secondary P-fertilizer KW - Sewage sludge ash KW - Soil KW - X-ray absorption near-edge structure (XANES) spectroscopy PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-433782 SN - 0044-7447 VL - 47 IS - 1 SP - 62 EP - 72 PB - Springer AN - OPUS4-43378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -