TY - JOUR A1 - Zweigle, J. A1 - Schmidt, A. A1 - Bugsel, B. A1 - Vogel, Christian A1 - Simon, Fabian A1 - Zwiener, C. T1 - Perfluoroalkyl acid precursor or weakly fluorinated organic compound? A proof of concept for oxidative fractionation of PFAS and organofluorines N2 - Organofluorine mass balance approaches are increasingly applied to investigate the occurrence of per- and polyfluoroalkyl substances (PFAS) and other organofluorines in environmental samples more comprehensively. Usually, complex samples prevent the identification and quantification of every fluorine-containing molecule. Consequently, large unidentified fractions between fluorine sum parameters such as extractable organic fluorine (EOF) and the sum of quantified analytes are frequently reported. We propose using oxidative conversion to separate (unidentified) weakly fluorinated compounds (e.g., pesticides, pharmaceuticals) from PFAA-precursors (perfluoroalkyl chain lengths ≥ C6). We show with three organofluorine model substances (flufenamic acid, diflufenican, pantoprazole) that CF3-groups or aromatic fluorine can be quantitatively converted to inorganic fluoride and trifluoroacetic acid (TFA) by applying PhotoTOP oxidation (UV/TiO2). The principle of fluorine separation in mixtures is demonstrated by the oxidation of the three weakly fluorinated compounds together with the PFAA-precursor 6:2/6:2 fluorotelomer mercaptoalkyl phosphate diester (FTMAP). After oxidation, the products F− and TFA were separated from PFCAs ( C4) by SPE, and the fractions were analyzed individually. Closed mass balances both with and without the addition of organic matrix were achieved. Eventually, the fluorine balance was verified by total fluorine measurements with combustion ion chromatography (CIC). The proposed methods should be considered a proof of concept to potentially explain unidentified fractions of the EOF, especially if compounds with low fluorine content such as pesticides, pharmaceuticals, and their transformation products contribute largely to the EOF. Future studies are needed to show the applicability to the complexity of environmental samples. Graphical Abstract KW - Combustion Ion Chromatography KW - Per- and Polyfluoroalkyl substances (PFAS) PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-613429 DO - https://doi.org/10.1007/s00216-024-05590-5 SP - 1 EP - 10 PB - Springer Science and Business Media LLC AN - OPUS4-61342 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zweigle, J. A1 - Capitain, C. A1 - Simon, Fabian Michael A1 - Roesch, Philipp A1 - Bugsel, B. A1 - Zwiener, C. T1 - Non-extractable PFAS in functional textiles − Characterization by complementary methods: oxidation, hydrolysis, and fluorine sum parameters N2 - Per- and polyfluoroalkyl substances (PFAS) are widely used for durable water-repellent finishing of different fabrics and textiles like outdoor clothing, carpets, medical textiles and more. Existing PFAS extraction techniques followed by target analysis are often insufficient in detecting widely used side-chain fluorinated polymers (SFPs) that are barely or non-extractable. SFPs are typically copolymers consisting of a non-fluorinated backbone with perfluoroalkyl side-chains to obtain desired properties. We compared the accessible analytical information and performance of complementary techniques based on oxidation (dTOP assay, PhotoTOP), hydrolysis (THP assay), standard extraction, extractable organic fluorine (EOF), and total fluorine (TF) with five functional textiles and characterized 7 further textiles only by PhotoTOP oxidation. The results show that when applied directly to textile samples, oxidation by dTOP and PhotoTOP and also hydrolysis by the THP are able to capture large fractions of the TF in form of perfluoroalkyl side-chains present in the textiles while methods relying on extracts (EOF, target and non-target analysis) were much lower (e.g., factor ~25-50 lower). The conversion of large fractions of the measured TF into PFCAs or FTOHs from fluorinated side chains is in contrast to previous studies. Concentrations ranged from 0.9 and <0.4 mmol/g for both types of chitosan and activated carbon, respectively). Milled activated carbon proved to be the better adsorption material, considering the fixed volume of the adsorber (>99.9% PFOS adsorbed). Overall, the cross-linking agent concentration in chitosan is a crucial factor influencing its PFOS absorption potential. Our results feature cross-linked chitosan as an effective economic and ecologic alternative for PFOS adsorption in aqueous solutions. KW - Combustion Ion Chromatography KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Remediation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-618406 DO - https://doi.org/10.3390/app142311145 VL - 14 IS - 23 SP - 1 EP - 13 PB - MDPI AN - OPUS4-61840 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weimann, Karin A1 - Adam, Christian A1 - Buchert, M. A1 - Sutter, J. T1 - Environmental Evaluation of Gypsum Plasterboard Recycling N2 - Gypsum is widely used in the construction sector and its worldwide consumption has been increasing for several decades. Depending on the life-time of the used gypsum products, an increase of gypsum in construction and demolition waste follows. Especially against the background of a circular economy, the recycling of waste gypsum is of growing importance. However, the use of recycled gypsum makes only sense if it is environmentally friendly. Therefore, an evaluation of the environmental impacts of an industrial-scale processing for the recycling of post-consumer gypsum waste was conducted. The evaluation was performed with an established life cycle assessment software. Original data provided by industry and complementary data from a database for life cycle assessments were used for the calculations. Two scenarios for recycled gypsum with different transportation distances were calculated. These results are compared with results of the environmental evaluation of gypsum derived from coal-fired power plants (FGD gypsum) and natural gypsum. The results show that utilization of recycled gypsum can be environmentally advantageous compared to the use of natural gypsum or FGD gypsum, especially in the impact categories land transformation and resource consumption (abiotic depletion potential). For most environmental impact categories the specific transportation distances have a strong influence. KW - Gypsum plasterboards KW - Gypsum waste KW - Recycled gypsum KW - Environmental evaluation PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-522321 DO - https://doi.org/10.3390/min11020101 SN - 2075-163X VL - 11 IS - 2 SP - 101 PB - MDPI CY - Basel, Schweiz AN - OPUS4-52232 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weimann, Karin T1 - New sources for secondary gypsum N2 - In order to protect natural gypsum deposits and to compensate for the decreasing amount of Flue Gas Desulfurization (FGD) gypsum it is necessary to develop and explore new sources of gypsum. For this purpose, the potentials of different gypsum wastes are investigated in the study “GipsRec 2.0”, funded by the Federal Ministry of Education and Research (Germany). On the one hand, the project worked on a new processing technology for gypsum fiberboards (GFB). While the recycling of gypsum plasterboards has already been carried out on an industrial scale for several years, the recycling of gypsum fiberboards (GFB) has proven to be challenging. Gypsum fiberboards from demolition sites and offcuts from GFB production were used for these investigations. The tests were conducted on a technical scale. Furthermore, various synthetic gypsums are being investigated with regard to their suitability for gypsum production. The analyses are carried out on production residues. In this project, a promising process for gypsum fiberboard recycling could be developed, as well as other waste gypsums are investigated and evaluated with regard to their potential as secondary raw material. In addition, selected process routes are assessed for their environmental impact using a life cycle assessment (LCA) approach. T2 - RILEM - V International Conference Progress of Recycling in the Built Environment CY - Weimar, Germany DA - 10.10.2023 KW - Gypsum recycling KW - Gypsum fiberboards and synthetic gypsum KW - Environmental evaluation PY - 2023 AN - OPUS4-60316 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weimann, Karin T1 - Gypsum plasterboard recycling - a sustainable approach N2 - Gypsum (calcium sulfate dihydrate) has excellent building material properties and has been widely used in constructions in the last decades in many countries. Accordingly, an increase of waste gypsum in C&D waste is expected in the upcoming years. On one hand, sulfates are unwanted in other secondary building materials (particularly in recycled concrete aggregates) and should be minimized for quality reasons. On the other hand, used gypsum from CDW can also be used in gypsum production if the high quality requirements for the recycled gypsum – especially regarding the sorting accuracy - are met. A large percentage of the gypsum from buildings was installed as gypsum plasterboards in interior fittings so far. Gypsum plasterboards are comparatively simple to remove and to separate during selective dismantling. Therefore, a high sorting purity can be achieved. In addition, techniques for the recycling of gypsum plasterboards already exist and high quality standards can be achieved. Also, the reuse in gypsum production has been improved in the last decade. Furthermore, an environmental evaluation of the whole process of gypsum plasterboard recycling and reuse showed that this approach can be environmentally advantageous. Therefore, a closed-loop recycling of gypsum plasterboards is feasible. This poster will show the development of gypsum consumption in different countries as well as a prognosis for the upcoming of gypsum in CDW in the future decades in Germany. Furthermore, a simplified scheme of the recycling process and selected results from an environmental evaluation will be presented. T2 - Conference on Mining the European Anthroposphere: Poster session CY - Bologna, Italy DA - 20.02.2020 KW - LCA KW - Gypsum recycling PY - 2020 AN - OPUS4-51435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weiler, L. A1 - Pfingsten, J. A1 - Eickhoff, H. A1 - Geist, I. A1 - Hilbig, H. A1 - Hornig, U. A1 - Kalbe, Ute A1 - Krause, K. A1 - Kautetzky, D. A1 - Linnemann, V. A1 - Gschwendtner, M. A1 - Lohmann, D. A1 - Overeem-Bos, E. A1 - Schwerd, R. A1 - Vollpracht, A. T1 - Improving consistency at testing cementitious materials in the Dynamic Surface Leaching Test on the basis of the European technical specification CENTS 16637–2 – Results of a round robin test N2 - The environmental impact assessment of materials is usually based on laboratory tests, mostly in combination with models describing the longterm fate of the substances of interest in the targeted environmental compartment. Thus, laboratory tests are the fundamental link to achieve appropriate assessment conclusions which makes it essential to generate consistent results. This just as applies to the leaching of cementitious materials. In Europe, the leaching behavior of monolithic building materials is tested in the Dynamic Surface Leaching Test following the specification CEN/TS 16637–2. An interlaboratory comparison on European level regarding this technical specification showed relatively high intra- and interlaboratory variations for the tested materials (monolithic copper slag and cement stabilized coal fly ash). Therefore the German Committee for Structural Concrete (DAfStb) framed a guideline to specify additional testing conditions for cementitious materials. To assess the possible improvement by this guidelines measures, a round robin test with 11 participants from Germany and the Netherlands was conducted. This work aims to provide insight into the factors to be considered in the testing of alkaline materials, including sample preparation, and highlights crucial procedures and their manifestation in the results. All evaluated parameters showed improved results compared to the earlier round robin test. The relative standard deviations for repeatability (RSDr) and reproducibility (RSDR) of the elements calcium, barium, antimony, chromium, molybdenum and vanadium, which are the parameters evaluated in both round robin tests, were RSDr = 4%, 4%, 2%, 5%, 5%, and 5% respectively (4% in average) for this work, in comparison to the European round robin test with an average RSDr of 29% (17%, 17%, 20%, 40%, 36%, and 42%). The RSDR improved from 41% (30%, 36%, 29%, 57%, 40%, and 56%) to 14% (12%, 8%, 6%, 28%, 15%, and 12%). CO2 ingress during testing and the inaccuracy of eluate analytics for concentrations close to the determination limits were identified as the main sources of error. KW - Environmental assessment KW - Leaching KW - Heavy metals KW - Round robin test KW - Building Material PY - 2022 DO - https://doi.org/10.1016/j.jenvman.2022.114959 SN - 0301-4797 VL - 314 SP - 1 EP - 9 PB - Elsevier CY - Amsterdam AN - OPUS4-54647 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Walsh, Michael A1 - Schenk, Gerhard A1 - Robinson, Nicole A1 - John, Samuel A1 - Dayananda, Buddhi A1 - Krishnan, Vithya A1 - Adam, Christian A1 - Hermann, Ludwig A1 - Schmidt, Susanne T1 - The Circular Phosphorus Economy: Agronomic Performance of Recycled Fertilizers and Target Crops N2 - ABSTRACTBackgroundThe circular phosphorus (P) economy addresses economic and environmental penalties inherent to the current linear P economy. Phosphorus sources recovered from waste steams (recyclates) offer an alternative to conventional fertilizers.AimThis research aimed to assess the agronomic performance of P recyclates derived from wastewater (hazenite, struvite), treated sewage sludge ash (SSA) and compost (FOGO food organics/garden organics) with crops previously characterized for P use efficiency (PUE).MethodsPhosphorus was supplied as granules and benchmarked against conventional fertilizers or mineral solution. Grown in controlled conditions, crops received recyclates individually or as amalgamates, with or without additional water‐soluble P. We quantified P uptake, yield and phytate content, and calculated agronomic performance indicators.ResultsResults revealed that (1) crop genotypes with purportedly lower or higher PUE showed similar performance when grown with limiting P supply and/or less soluble P recyclates, (2) crop performance improved when less soluble P recyclates were combined with water‐soluble P, (3) crops produced similar yield and biomass when supplied with an organo‐mineral formulation, hazenite, or conventional fertilizer, (4) grain accumulated higher levels of the antinutrient phytate with excess soluble P.ConclusionWe conclude that suitably formulated P recyclates can supplement or replace conventional fertilizers, and that fertilizer design should consider the solubility of recyclates and a crop's ability to access less soluble P. This adds to the growing body of evidence that well‐formulated next‐generation fertilizers can efficiently nourish crops. Integrating insights from controlled experiments and field trials is a cost‐effective strategy to actualize the circular P economy. KW - Recycling fertilizer KW - Phosphate recovery KW - Sewage sludge ash KW - Struvite KW - Hazenite PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-627116 DO - https://doi.org/10.1002/jpln.202400299 SP - 1 EP - 14 PB - Wiley AN - OPUS4-62711 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Urban, Klaus A1 - Ackerhans, C. A1 - Gorbushina, Anna T1 - Analysis of Carbon and Nitrogen from Atmospheric Sources by Bulk Deposition Sampling at various locations in Germany N2 - Atmospheric deposition of particulate matter is an important indicator of air pollution and a significant factor in material surface fouling. The elemental composition of this nutrient-containing dust depends largely on the exposure region and time as well as on climate. Therefore, in this paper we report an analysis of atmospheric pollutions with a self-made low-cost bulk deposition sampler directed at sampling deposition via air transport and rainfall. We used the device in diverse environments - thus comparing an urban region, an area surrounded by forest and an area mainly dominated by agriculture. The total organic carbon (TOC) and total nitrogen (TN) amounts were selected as indicator parameters and analyzed in a biweekly rhythm for three and a half and two years, respectively. The TOC value responded to particulate matter in the urban area, especially significant were the influences of the New Year's firework in urban and pollen in the rural forest area. In contrast, the TN value was more under the influence of the nitrogen emissions in the agriculture-dominated area. However, the TN value did not correlate with the NOx values in the urban area because the atmospheric nitrogen emissions in the city might originate from various emission sources. Summarizing, the TOC and TN values of the self-made low-cost bulk deposition sampler were in good agreement with environmental events of their immediate surrounding. Moreover, the selected containers and sampling procedures are universally applicable to monitor and analyze organic as well as inorganic parameters (e.g. metal ions) of atmospheric deposition. KW - Passive sampling KW - Biomonitoring KW - Air Analysis PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-609373 DO - https://doi.org/10.1016/j.envadv.2024.100583 SN - 2666-7657 VL - 17 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-60937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Vogel, Christian A1 - Slee, D. ED - Naidu, R. T1 - Chapter 5 Analytical techniques for Per- and Polyfluoroalkyl substances (PFAS) N2 - Per- and polyfluoroalkyl substances (PFAS) are a group of various anthropogenic organic products, in which the hydrogen atoms on the carbon skeleton of at least one carbon atom have been completely replaced by fluorine atoms. Because this group contains more than 7 million compounds, they can have very different properties. PFAS analysis in environmental samples is currently mainly utilized by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and related techniques as well as gas chromatography-mass spectrometry (GC-MS) to conduct target analysis. However, to get a better overview of the amount of “total” amount of PFAS, sum parameter methods like total oxidizable precursor assay (TOPA), absorbable organic fluorine (AOF), and extractable organic fluorine (EOF) are in development. Additionally, for research purposes, several spectroscopical methods like X-ray photoelectron spectroscopy (XPS), fluorine K-edge X-ray absorption near-edge structure (XANES) spectroscopy, particular induced gamma-ray emission (PIGE) spectroscopy as well as19 F nuclear magnetic resonance (NMR), infrared, and Raman spectroscopy are available. Therefore, an overview is given on currently available analytical techniques for PFAS in environmental samples and their application possibilities discussed for different kinds of PFAS subgroups. KW - Per- and polyfluoroalkyl substances (PFAS) KW - Analytics KW - Liquid chromatography - mass spectrometry (GC-MS) KW - Sum parameter PY - 2025 DO - https://doi.org/10.1515/9783110796797-005 SP - 143 EP - 168 PB - De Gruyter AN - OPUS4-62662 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Vogel, Christian A1 - Simon, Franz-Georg A1 - Scholz, Philipp T1 - The chemical state of antimony and vanadium species in municipal solid waste incineration bottom ash N2 - Due to the large quantity as residual mineral waste, municipal solid waste incineration - bottom ash (MSWI-BA) is an interesting secondary raw material that can be utilized for road construction. However, leaching of chloride, sulfate and potentially hazardous heavy metals from MSWSI-BA into the environment may cause problems in utilization of it in civil engineering. In a previous study, we performed a long-term leaching test of MSWI-BA in a lysimeter for almost six years to investigate the efficiency of the treatment process on the release of hazardous substances. While concentrations of chloride, sulfate and the majority of the heavy metals started to decrease rapidly with progressive liquid-to-solid ratio (L/S), the ecotoxic hazardous elements antimony (Sb) and vanadium (V) behaved differently. To unravel these unusual release behaviors and the oxyanion-formation of Sb and V we will apply HERFD-XANES spectroscopy to analyze their chemical state. KW - Bottom ash KW - Antimony KW - Vanadium KW - XANES PY - 2023 DO - https://doi.org/10.15151/ESRF-ES-1020936484 PB - European synchroton Radiation Facility ESRF CY - Grenoble AN - OPUS4-56875 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Sekine, R. A1 - Huang, J. A1 - Steckenmesser, D. A1 - Steffens, D. A1 - Huthwelker, T. A1 - Borca, C. A1 - Pradas del Real, A. A1 - Castillo-Michel, H. A1 - Adam, Christian T1 - Effects of a nitrification inhibitor on nitrogen species in the soil and the yield and phosphorus uptake of maize N2 - Phosphorus (P) resource availability is declining and the efficiency of applied nutrients in agricultural soils is becoming increasingly important. This is especially true for P fertilizers from recycled materials, which often have low plant availability. Specific co-fertilization with ammoniumcan enhance P plant availability in soils amended with these P fertilizers, and thus the yield of plants. To investigate this effect, we performed a pot experiment with maize in slightly acidic soil (pH 6.9) with one water-soluble (triple superphosphate [TSP]) and two water-insoluble (sewage sludge-based and hyperphosphate [Hyp]) P fertilizers and anammoniumsulfate nitrate with or without a nitrification inhibitor (NI). The dry matter yield of maize was significantly increased by the NI with the Hyp (from 14.7 to 21.5 g/pot) and TSP (from 40.0 to 45.4 g/pot) treatments. Furthermore, P uptake was slightly increased in all three P treatments with the NI, but not significantly. Olsen-P extraction and P K-edge micro-X-ray absorption near-edge structure (XANES) spectroscopy showed that apatite-P of the water insoluble P fertilizers mobilized during the plant growth period. In addition, novel nitrogen (N) K-edge micro-XANES spectroscopy and the Mogilevkina method showed that the application of an NI increased the fixation of ammonium in detectable hot spots in the soil. Thus, the delay in the nitrification process by the NI and the possible slow-release of temporarily fixed ammoniumin the soil resulted in a high amount of plant available Ammonium in the soil solution. This development probably decreases the rhizosphere pH due to release of H+ by plants during ammoniumuptake, whichmobilizes phosphorus in the amended soil and increases the dry matter yield of maize. This is especially important for water-insoluble apatite-based P fertilizers (conventional and recycled), which tend to have poor plant availability. KW - Fertilzer KW - Phosphorus recovery KW - Ammonium KW - Nitrification inhibitor KW - XANES spectroscopy KW - Diffusive gradients in thin films (DGT) PY - 2020 DO - https://doi.org/10.1016/j.scitotenv.2020.136895 SN - 1879-1026 VL - 715 SP - 1 EP - 8 PB - Elsevier CY - Amsterdam AN - OPUS4-50477 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Scholz, Philipp A1 - Kalbe, Ute A1 - Caliebe, W. A1 - Tayal, A. A1 - Vasala, S. J. A1 - Simon, Franz-Georg T1 - Speciation of antimony and vanadium in municipal solid waste incineration ashes analyzed by XANES spectroscopy N2 - The use of ashes from municipal solid waste incineration as secondary building materials is an important pillar for the circular economy in Germany. However, leaching of potential toxic elements from these materials must be at environmentally acceptable levels. Normally, a three-month ageing period immobilizes most hazardous heavy metals, but antimony (Sb) and vanadium (V) showed previously unusual leaching. In order to clarify the mechanisms, we analyzed the Sb and V species in various bottom and fly ashes from municipal waste incineration by XANES spectroscopy. Antimony oxidizes from Sb(+ III) species used as flame retardants in plastics to Sb(+ V) compounds during waste incineration. However, owing to the similarity of different Sb(+ V) compound in the Sb K- and L-edge XANES spectra, it was not possible to accurately identify an exact Sb(+ V) species. Moreover, V is mainly present as oxidation state + V compound in the analyzed ashes. However, the coarse and magnetic fraction of the bottom ashes contain larger amounts of V(+ III) and V(+ IV) compounds which might enter the waste incineration from vanadium carbide containing steel tools. Thus, Sb and V could be critical potential toxic elements in secondary building materials and long-term monitoring of the release should be taken into account in the future. KW - Müllverbrennung KW - XANES spectroscopy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599841 DO - https://doi.org/10.1007/s10163-024-01954-2 SN - 1438-4957 VL - 26 SP - 2152 EP - 72158 PB - Springer Science and Business Media LLC AN - OPUS4-59984 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Roesch, Philipp A1 - Wittwer, Philipp A1 - Sommerfeld, Thomas A1 - Riedel, Maren A1 - Leube, Peter A1 - Kalbe, Ute A1 - Schoknecht, Ute A1 - Simon, Franz-Georg T1 - Per- and Polyfluoroalkyl Substances (PFAS) in Ski Waxes and Snow from Cross-Country Skiing in Germany - Comparative study of Sum Parameter and Target Analysis N2 - Per- and polyfluoroalkyl substances (PFAS) are often environmentally exposed via discharge through human consumer products, such as ski waxes. In our study we analyzed various ski waxes from the 1980s and 2020s, to determine both the sum parameter values total fluorine (TF), extractable organically bound fluorine (EOF), hydrolysable organically bound fluorine (HOF) as well as targeted PFAS analysis. This showed that modern high-performance waxes contain up to 6 % TF, but also PFAS-free labelled ski waxes contain traces of PFAS with EOF/HOF values in the low mg kg-1 range. With the ban of all fluorine-based waxes with the start of the 2023/2024 winter season this will probably change soon. Moreover, we applied our analysis methods to snow samples from a frequently used cross country ski trail (Kammloipe) in the Ore Mountain region in Germany, assessing the potential PFAS entry/discharge through ski waxes. Melted snow samples from different spots were analyzed by the adsorbable organically bound fluorine (AOF) sum parameter and PFAS target analysis and confirmed the abrasion of the ski waxes into the snow. Moreover, on a PFAS hotspot also soil samples were analyzed, which indicate that PFAS from the ski waxes adsorb after snow melting into the soil. KW - Combustion Ion Chromatography KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Consumer Products PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612760 DO - https://doi.org/10.1016/j.hazadv.2024.100484 VL - 16 SP - 1 EP - 5 PB - Elsevier B.V. AN - OPUS4-61276 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Roesch, Philipp A1 - Wittwer, Philipp A1 - Piechotta, Christian A1 - Lisec, Jan A1 - Sommerfeld, Thomas A1 - Kluge, Stephanie A1 - Herzel, Hannes A1 - Huthwelker, T. A1 - Borca, C. A1 - Simon, Franz-Georg T1 - Levels of per- and polyfluoroalkyl substances (PFAS) in various wastewater-derived fertilizers - Analytical investigations from different perspectives N2 - Solid wastewater-based fertilizers were screened for per- and polyfluoroalkyl substances (PFAS) by the extractable organic fluorine (EOF) sum parameter method. The EOF values for ten sewage sludges from Germany and Switzerland range from 154 to 7209 mg kg−1. For thermal treated sewage sludge and struvite the EOF were lower with values up to 121 mg kg−1. Moreover, the application of PFAS targeted and suspect screening analysis of selected sewage sludge samples showed that only a small part of the EOF sum parameter values can be explained by the usually screened legacy PFAS. The hitherto unknown part of EOF sum parameter contains also fluorinated pesticides, pharmaceutical and aromatic compounds. Because these partly fluorinated compounds can degrade to (ultra-)short PFAS in wastewater treatment plants they should be considered as significant sources of organic fluorine in the environment. The combined results of sum parameter analysis and suspect screening reveal the need to update current regulations, such as the German fertilizer ordinance, to focus not solely on a few selected PFAS such as perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) but consider an additional sum parameter approach as a more holistic alternative. Moreover, diffusion gradient in thin-films (DGT) passive samplers were utilized as an alternative simplified extraction method for PFAS in solid wastewater-based fertilizers and subsequently quantified via combustion ion chromatography. However, the DGT method was less sensitive and only comparable to the EOF values of the fertilizers in samples with >150 mg kg−1, because of different diffusion properties for various PFAS, but also kinetic exchange limitations. KW - Combustion ion chromatography KW - Per- and polyfluoroalkyl substances (PFAS) KW - Sewage sludge KW - Fertilizer PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-583429 DO - https://doi.org/10.1039/d3va00178d SN - 2754-7000 VL - 2 IS - 10 SP - 1436 EP - 1445 PB - Royal Society of Chemistry (RSC) CY - London AN - OPUS4-58342 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Hoffmann, Marie A1 - Taube, Mareike A1 - Krüger, O. A1 - Baran, R. A1 - Adam, Christian T1 - Uranium and thorium species in phosphate rock and sewage sludge ash based phosphorus fertilizers N2 - Phosphorus (P) is an essential element for all forms of life and is thus often applied as phosphate rock-based P-fertilizers in agriculture to enable continuous farming. However, these P-fertilizers contain also hazardous uranium (U) and thorium (Th), up to 660 and 220 mg/kg, respectively. On the contrary, novel P-fertilizers made from sewage sludge (ash) contain only low mass fractions of U and Th. In addition to the total amount of U and Th in P-fertilizers, their mobility and bioavailability is important, which depends to a large extent on their chemical state, especially oxidation state and chemical bonding. Thus, we analyzed their chemical state in various P-fertilizers by U and Th L3-edge HERFD-XANES spectroscopy. Phosphate rocks and sewage sludge-based P-fertilizers contain mainly U(IV) compounds which have only a low bioavailability. In contrast, acidic treatment of phosphate rock to produce super phosphates lead to an oxidation to U(VI) compounds (including formation of uranium phosphates) with a strongly increased bioavailability. On the contrary, all analyzed P-fertilizers contain Th in form of strongly insoluble phosphates and oxides with a low bioavailability. Additionally performed water extractions and Diffusive Gradients in Thin-films (DGT) experiments support these findings. KW - Phosphorus fertilizer KW - Sewage sludge KW - X-ray absorption near-edge structure (XANES) spectroscopy KW - Diffusive Gradients in Thin-films (DGT) KW - Extraction PY - 2020 DO - https://doi.org/10.1016/j.jhazmat.2019.121100 SN - 0304-3894 VL - 382 SP - 121100, 1 EP - 6 AN - OPUS4-48872 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Hoffmann, Marie A1 - Krüger, O. A1 - Murzin, V. A1 - Caliebe, W. A1 - Adam, Christian T1 - Chromium (VI) in phosphorus fertilizers determined with the diffusive gradients in thin-films (DGT) technique N2 - Phosphorus (P) fertilizers from secondary resources became increasingly important in the last years. However, these novel P-fertilizers can also contain toxic pollutants such as chromium in its hexavalent state (Cr(VI)). This hazardous form of chromium is therefore regulated with low limit values for agricultural products even though the correct determination of Cr(VI) in these fertilizers may be hampered by redox processes, leading to false results. Thus, we applied the novel diffusive gradients in thin-films (DGT) technique for Cr(VI) in fertilizers and compared the results with the standard wet chemical extraction method (German norm DIN EN 15192) and Cr K-edge X-ray Absorption near-edge structure (XANES) spectroscopy. We determined an overall good correlation between the wet chemical extraction and the DGT method. DGT was very sensitive and for most tested materials selective for the analysis of Cr(VI) in P-fertilizers. However, hardly soluble Cr(VI) compounds cannot be detected with the DGT method since only mobile Cr(VI) is analyzed. Furthermore, Cr K-edge XANES spectroscopy showed that the DGT binding layer also adsorbs small amounts of mobile Cr(III) so that Cr(VI) values are overestimated. Since certain types of the P fertilizers contain mobile Cr(III) or partly immobile Cr(VI), it is necessary to optimize the DGT binding layers to avoid aforementioned over- or underestimation. Furthermore, our investigations showed that the Cr K-edge XANES spectroscopy technique is unsuitable to determine small amounts of Cr(VI) in fertilizers (below approx. 1% of Cr(VI) in relation to total Cr). KW - Phosphorus fertilizer KW - Sewage sludge ash KW - Diffusive Gradients in thin films (DGT) KW - Chemical extraction KW - XANES spectroscopy PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509578 DO - https://doi.org/10.1007/s11356-020-08761-w SN - 0944-1344 VL - 27 SP - 24320 EP - 24328 PB - Springer AN - OPUS4-50957 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Helfenstein, J. A1 - Massey, M. A1 - Sekine, R. A1 - Kretzschmar, R. A1 - Beiping, L. A1 - Peter, T. A1 - Chadwick, O. A1 - Tamburini, F. A1 - Rivard, C. A1 - Herzel, Hannes A1 - Adam, Christian A1 - Pradas del Real, A. A1 - Castillo-Michel, H. A1 - Zuin, L. A1 - Wang, D. A1 - Félix, R. A1 - Lassalle-Kaiser, B. A1 - Frossard, E. T1 - Microspectroscopy reveals dust-derived apatite grains in acidic, highly-weathered Hawaiian soils N2 - Dust deposition is an important source of phosphorus (P) to many ecosystems. However, there is little evidence of dust-derived P-containing minerals in soils. Here we studied P forms along a well-described climatic Gradient on Hawaii, which is also a dust deposition gradient. Soil mineralogy and soil P forms from six sites along the climatic gradient were analyzed with bulk (X-ray diffraction and P K-edge X-ray absorption near edge structure) and microscale (X-ray fluorescence, P K-edge X-ray absorption near edge structure, and Raman) analysis methods. In the wettest soils, apatite grains ranging from 5 to 30 μm in size were co-located at the micro-scale with quartz, a known continental dust indicator suggesting recent atmospheric deposition. In addition to co-location with quartz, further evidence of dust-derived P included backward trajectory modeling indicating that dust particles could be brought to Hawaii from the major global dust-loading areas in central Asia and northern Africa. Although it is not certain whether the individual observed apatite grains were derived from long-distance transport of dust, or from local dust sources such as volcanic ash or windblown fertilizer, these observations offer direct evidence that P-containing minerals have reached surface layers of highly-weathered grassland soils through atmospheric deposition. KW - Phosphorus KW - soil KW - microspectroscopy KW - Raman spectroscopy KW - XANES spectroscopy KW - x-ray diffraction PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511522 DO - https://doi.org/10.1016/j.geoderma.2020.114681 SN - 0166-0918 SN - 1872-6259 VL - 381 SP - 114681-1 EP - 114681-11 PB - Elsevier CY - Amsterdam AN - OPUS4-51152 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Vogel, Christian A1 - Helfenstein, J. A1 - Massey, M. A1 - Kretzschmar, R. A1 - Schade, U. A1 - Verel, R. A1 - Chadwick, O. A1 - Frossard, E. T1 - Spectroscopic analysis shows crandallite can be a major component of soil phosphorus N2 - Phosphorus (P) bioavailability is crucial for the productivity of natural and agricultural ecosystems, and soil P speciation plays a major role therein. Better understanding of P forms present in soil is thus essential to predict bioavailability. Most studies on soil P forms differentiate between Ca-bound P (e.g. apatite), organic P, Fe-bound P, and Al-bound P. In our analysis of a Ca, Al, and P rich soil from the Kohala region of Hawaii, we identified the mineral crandallite, CaAl3(PO4)2(OH)5∙H2O, a mineral previously not considered to play a significant role in soils. Crandallite was first identified with powder X-ray diffraction, and then confirmed with microfocused P K-edge X-ray absorption near edge structure (XANES) spectroscopy, micro-infrared spectroscopy, and solid-state 31P nuclear magnetic resonance (NMR) spectroscopy. Crandallite XANES spectra were distinct from other common XANES spectra due to the presence of features in the post-edge region of the spectrum. Linear combination fitting of bulk P K-edge XANES spectra allowed the determination of the proportion of crandallite to the total P content, indicating that crandallite comprises up to half, possibly even more of the soil P in the samples. Crandallite is therefore an important and potentially overlooked component of soil P, which pedogenically forms in soils with high P, Al, and Ca contents, where it likely plays an important role in P bioavailability. KW - Phosphor KW - XANES spectrosocpy KW - infrared spectroscopy PY - 2025 DO - https://doi.org/10.2139/ssrn.5556609 SP - 1 EP - 31 PB - SRN AN - OPUS4-64739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Helfenstein, J. A1 - Massey, M. A1 - Kretzschmar, R. A1 - Schade, U. A1 - Verel, R. A1 - Chadwick, O. A1 - Frossard, E. T1 - Spectroscopic analysis shows crandallite can be a major component of soil phosphorus N2 - Phosphorus (P) bioavailability is crucial for the productivity of natural and agricultural ecosystems, and soil P speciation plays a major role therein. Better understanding of P forms present in soil is thus essential to predict bioavailability. However, P speciation studies are only as powerful as the reference spectra used to interpret them, and most studies rely on a limited set of reference spectra. Most studies on soil P forms differentiate between Ca-bound P (e.g. apatite), organic P, Fe-bound P, and Al-bound P. In our analysis of a Ca, Al, and P rich soil from the Kohala region of Hawaii, we identified the mineral crandallite, CaAl3(PO4)2(OH)5·H2O, a mineral previously not considered to play a significant role in soils. Crandallite was first identified with powder X-ray diffraction. Subsequently reference spectra were collected, and the presence of crandallite was confirmed using micro-focused P K-edge X-ray absorption near edge structure (XANES) spectroscopy, micro-infrared spectroscopy, and solid-state 31P nuclear magnetic resonance (NMR) spectroscopy. Crandallite XANES spectra were distinct from other common XANES spectra due to the presence of features in the post-edge region of the spectrum. Linear combination fitting of bulk P K-edge XANES spectra allowed the determination of the proportion of crandallite to the total P content, indicating that crandallite comprises up to half, possibly even more of the soil P in the samples. Crandallite is therefore an important and potentially overlooked component of soil P, which pedogenically forms in soils with high P, Al, and Ca contents, where it could play an important role in P bioavailability. KW - Phosphorus KW - XANES spectrosocpy KW - Infrared spectroscopy KW - NMR spectrocopy PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654968 DO - https://doi.org/10.1016/j.geoderma.2026.117712 SN - 0016-7061 VL - 467 SP - 1 EP - 10 PB - Elsevier B.V. AN - OPUS4-65496 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Doolette, A. A1 - Huang, J. T1 - Combining diffusive gradients in thin-films (DGT) and 31P NMR spectroscopy to determine phosphorus species in soil N2 - The diffusive gradients in thin-films (DGT) technique shows in many publications a superior correlation to the amount of plant-available phosphorus (P) in soil. However, this technique cannot give information on the plant-available P species in soil. Therefore, we combined DGT with solution 31P nuclear magnetic resonance (NMR) spectroscopy. This was achieved by using a modified DGT device in which the diffusive layer had a larger pore size, the binding layer incorporated an adsorption material with a higher capacity, and the device had a larger exposure area. The spectroscopic investigation was undertaken after elution of the deployed DGT binding layer in a NaOH solution. Adsorption tests using solutions of known organic P compounds showed that a sufficient amount of these compounds could be adsorbed on the binding layer in order for them to be analyzed by solution 31P NMR spectroscopy. Furthermore, various intermediates of the hydrolysis of trimetaphosphate in soil could be also analyzed over time. KW - Phosphorus KW - Diffusive gradients in thin-films (DGT) KW - Passive sampling KW - fertilizer PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545759 DO - https://doi.org/10.1002/ael2.20068 VL - 7 IS - 1 SP - e20068 PB - Wiley online library AN - OPUS4-54575 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - Leaching behavior of Antimony in MSWI bottom ash N2 - Bottom ash (BA) from municipal solid waste incineration (MSWI) contains harmful substances such as heavy metals, chloride and sulfate which are mobilized in contact with water. Standardized leaching tests are used to measure the extent of mobilization. It is known that fresh bottom ash displays elevated concentrations of various heavy metals such as lead or zinc due to the formation of hydroxo complexes as a result of high pH values of 12 and above. Storage of BA is accompanied by ageing processes, mainly the reaction of CaO and Ca(OH)2 with CO2 leading to lower pH values in contact with water around 11. Usually heavy metals concentrations are minimum at these conditions. Knowledge of the long-term leaching behavior of potentially harmful substances is crucial for the assessment of the environmental compatibility of reusing municipal solid-waste incineration bottom ash (MSWI BA) in construction, i.e., as a road base layer. BA fractions obtained from wet-processing aiming at the improvement of environmental quality were used to investigate the mobility of relevant substances. Eluates from laboratory-scaled leaching procedures (column percolation and lysimeters) were analyzed to learn about the long-term release of substances. Unsaturated conditions and artificial rainwater were used in the lysimeter tests to simulate field conditions. In addition, batch test eluates were generated at usual liquid-to-solid ratios (L/S) for compliance testing purposes. A variety of cations and anions was measured in the eluates. The wet treatment reduces the leaching of chloride and particularly sulfate by more than 60%. The release of typical contaminants for the treated MSWI BA such as the heavy metals Cu and Cr was well below 1% in the conducted leaching tests. An increase in the Sb concentration was observed in the lysimeter experiments starting at L/S 0.75 L/kg and in the column experiment at L/S 4 L/kg is assumed to be related to decreasing concentrations of Ca and thus to the dissolution of sparingly soluble calcium antimonate. The same leaching mechanism applies with V, but the concentration levels observed are less critical regarding relevant limit values. However, on the long term the behavior of Sb could be problematic for the application of MSWI BA as secondary building material. T2 - MINEA Final Conference CY - Bologna, Italy DA - 20.02.2020 KW - Antimony KW - Bottom ash KW - Leaching KW - Solubility PY - 2020 AN - OPUS4-50450 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - Application of Diffusive Gradients in Thin-films (DGT) and spectroscopic techniques to analyze phosphorus in soils N2 - A wide range of analytical methods are used to estimate the plant-availability of soil phosphorus (P). Previous investigations showed that analytical methods based on the Diffusive Gradients in Thin films (DGT) technique provide a very good correlations to the amount of bioavailable nutrients and pollutants in environmental samples (Davison 2016, Vogel et al. 2017). However, the DGT results do not identify which P compound of the soil has the high bioavailability. But there are various spectroscopic techniques (infrared, Raman, P K-edge and L-edge XANES and P NMR spectroscopy) available to characterize P species in soils. Therefore, spectroscopic investigation of DGT binding layers after deployment allow us to determine the specific compounds. Nutrients such as phosphorus and nitrogen are often, together with other elements, present as molecules in the environment. These ions are detectable and distinguishable by infrared, P K- and L-edge X-ray absorption near-edge structure (XANES) and NMR spectroscopy, respectively. Additionally, microspectroscopic techniques make it also possible to analyze P compounds on the DGT binding layer with a lateral resolution down to 1 μm2. Therefore, species of elements and compounds of e.g. a spatial soil segment (e.g. rhizosphere) can be mapped and analyzed, providing valuable insight to understand the dynamics of nutrients in the environment. T2 - SPP1685 Closing Conference: New Approaches to Ecosystem Nutrition - Phosphorus and Beyond CY - Freiburg, Germany DA - 25.10.2021 KW - Phosphorus KW - Diffusive gradients in thin-films (DGT) KW - Passive sampling PY - 2021 AN - OPUS4-53641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - Ammonium and nitrate in agricultural soils analyzed with the Diffusive Gradients in Thin-films technique N2 - The aim of this study was to investigate the passive sampler method Diffusive Gradients in Thin-films (DGT) for ammonium and nitrate in amended soils. Therefore, we used soils from a pot experiment with maize where nitrogen (N) was supplied as ammonium sulfate nitrate (ASN), without and with a nitrification inhibitor (NI). The additional use of a NI can delay the nitrification in the soil and making the ammonium available for a longer period in the soil solution after its application. Homogenized soil samples were collected directly from each pot after one week of incubation before sowing and after harvesting the maize. Nitrate and ammonium in these soil samples were extracted using DGT devices equipped with a Putolite A520E (for nitrate) and Microlite PrCH (for ammonium) binding layer. Ammonium DGT which determined the mobile and labile ammonium forms based on diffusion and the resupplies from the solid soil phase, only showed a significantly higher amount of extractable ammonium with NI compared to that without NI for some samples. However, significantly lower values were found for nitrate of treatments with NI compared to without NI after harvest. Thus, the lower nitrate amounts for treatments with NI compared to the treatments without NI after harvest indicated the delay of the nitrification process by the NI. Furthermore, we compared also the ammonium and nitrate DGT results to chemical extraction with KCl solutions. The results demonstrated that the trends of DGT results and chemical extraction were complimentary through all the treatments. T2 - International Passive Sampling Workshop (IPSW) 2021 virtual CY - Online meeting DA - 04.11.2021 KW - Phosphorus KW - Diffusive gradients in thin-films (DGT) KW - Ammonium KW - Nitrate PY - 2021 AN - OPUS4-53698 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - Fluorine K-edge X-ray absorption near-edge structure (XANES) spectroscopy as a novel tool for the characterization of per- and polyfluoroalkyl substances (PFAS) in soils and sludges N2 - Per- and polyfluoroalkyl substances (PFAS) have been used extensively in the past because of their inert chemical character and resistance to degradation by environmental influences. Since the beginning of their commercial use, PFAS have been widely exposed to the environment by application of PFAS in consumer products or as foaming agent in firefighting foams, thus several cases of contaminated soils sites have been reported. Since the number of known PFAS already exceeds 4700, their characterization and direct analysis is challenging given the current available techniques. Here, we introduce the novel fluorine (F) K-edge X-ray absorption near-edge structure (XANES) spectroscopy as a tool to analyze PFAS and inorganic fluorine compounds in contaminated soils and sewage sludges. While F K-edge bulk-XANES spectroscopy provide us information on the overall fluorine bonding in a sample micro X-ray fluorescence (XRF) in combination with F K-edge micro-XANES spectroscopy can also detect minor fluorine compounds and PFAS hotspots in investigated soils and sludges. Additionally, we used the combustion ion chromatography (CIC) to analyze the total amount of all PFAS as a sum parameter (extractable organic fluoride: EOF) in soils and sewage sludges. During combustion in the CIC, the PFAS in the sample get destroyed at temperatures of approx. 1000 °C and converted in inorganic fluorides that subsequently gets quantified by ion chromatography. Thus, for the first time we successfully combined F K-edge XANES spectroscopy and CIC as analytical tools to detect and quantify PFAS contaminants in soils and sewage sludges. T2 - SETAC Europe CY - Online meeting DA - 03.05.2021 KW - Sewage sludge KW - Combustion ion chromatography KW - Soil KW - X-ray absorption near-edge structure (XANES) spectroscopy PY - 2021 AN - OPUS4-52563 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - Analytical Challenges for PFAS in Environmental Samples - Methods, Approaches and Applicability N2 - Per- and polyfluoroalkyl substances (PFAS) are anionic, cationic and zwitterionic synthetic products, in which the hydrogen atoms on the carbon skeleton of at least one carbon atom have been completely replaced by fluorine atoms and which include up to 1.7 M compounds, depending on the definition. As a result of continuous and prolific use, mainly in aviation firefighting foams, thousands of industrial and military installations have been found to contain contaminated soil, groundwater and surface water. Furthermore, because of the continuous contamination through PFAS containing commercial products, effluents and sewage sludge from WWTPs have been shown to be an important source of PFAS discharge into the aquatic environment. In the last few years, legacy PFAS (≥C4) have been found in various environments, including soil, water and wastewater, and their environmental pathways have been partly described. Several long-chain PFAS species, and their respective salts are considered as persistent organic pollutants by the United Nations Stockholm Convention. These pollutants have been linked to altered immune and thyroid function, liver disease, lipid and insulin dysregulation, kidney disease, adverse reproductive and developmental outcomes, and cancer. A significant shift in the chemical industry towards production of short (C4-C7) and ultrashort (C1-C3) alternatives was observed in response to recently intensified regulations and restrictions on the use of long-chain (≥C8) PFAS. PFAS analysis in environmental samples is currently mainly done by liquid chromatography tandem mass spectrometry (LC-MS/MS). This efficient method is conducted in a targeted fashion analyzing a small subset of PFAS. The US EPA method for analysis of PFAS using LC-MS/MS for example currently lists 40 PFAS (≥C4). However, to get a better overview of the amount of “total PFAS,” sum parameter methods like total oxidizable precursor (TOP) assay and methods based on combustion ion chromatography (CIC) are in development. CIC results in data regarding the sum of absorbable organic fluorine (AOF) or extractable organic fluorine (EOF), which can also quantify other organically bound fluorine compounds such as fluorinated pesticides and pharmaceutical. Moreover, non-target and suspect screening mass spectrometry can be used to identify novel emerging PFAS and partly unknown fluorinated compounds in environmental samples. Furthermore, to analyze ultrashort PFAS (C1-C3), supercritical fluid chromatography (SFC), hydrophilic interaction chromatography (HILIC) and gas chromatography-mass spectrometry (GC-MS) are available, but further research is needed to develop reliable and accurate methods to quantify several ultrashort PFAS in environmental samples. Additionally, for research purpose several spectroscopical methods like X-ray photoelectron spectroscopy (XPS), fluorine K-edge X-ray absorption near-edge structure (XANES)spectroscopy, particular induced gamma-ray emission (PIGE) spectroscopy and 19F nuclear magnetic resonance (NMR) spectroscopy are available. T2 - CleanUp 2022 CY - Adelaide, Australia DA - 11.09.2022 KW - PFAS KW - Combustion ion chromatography KW - XANES spectroscopy PY - 2022 AN - OPUS4-55741 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - Mechanochemical Remediation of Per- and Polyfluoroalkyl Substanzes (PFAS) in Soils N2 - Per- and polyfluoroalkyl substances (PFAS) are a large group of anionic, cationic, or zwitterionic organofluorine surfactants used in the formulations of thousands of products and consumer goods, including aqueous film-forming foams (AFFF) used to suppress aviation fires in training scenarios, non-stick cookware, fast-food wrappers, water-repellent fabrics, medical equipment. Because PFAS have been extensively used in a variety of AFFF products they can be found in soils from industrial and military installations. Current decontamination strategies of PFAS-burdened soils mainly consist of adsorption methods using adsorbents for fixation of PFAS in the ground. A second option is the utilization of a “pump and treat” process, cycling polluted soils through a washing plant leading to the concentration of the pollutants in the fine fraction. Only a subsequent, high-energy consuming pyrolysis process guarantees the total destruction of all fluorinated organic contaminants. Both approaches are cost-intensive and not intended for the direct decomposition of all PFAS contaminants. Hence, there is a great demand for innovative developments and chemical treatment technologies, dealing with new strategies of tackling the PFAS problem. Previously, mechanochemical treatment of polychlorinated organic compounds in soils showed an efficient dechlorination. Thus, we investigated mechanochemical treatment of PFAS contaminated soils with various additives in a ball mill and analyzed the PFAS defluorination with gas chromatography mass spectrometry (GCMS) and liquid chromatography tandem mass spectrometry (LC-MS/MS), respectively, as well es the fluoride mineralization by ion chromatography (IC) and fluorine K-edge X-ray absorption near-edge structure (XANES) spectroscopy. T2 - CleanUp 2022 CY - Adelaide, Australia DA - 11.09.2022 KW - PFAS KW - Mechanochemical treatment KW - XANES spectroscopy PY - 2022 AN - OPUS4-55742 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - PFAS Sum Parameter and Structural Analysis N2 - Per- and polyfluoroalkyl substances (PFAS) are anionic, cationic and zwitterionic synthetic products, in which the hydrogen atoms on the carbon skeleton of at least one carbon atom have been completely replaced by fluorine atoms (see Figure 1) and which include more than 4730 compounds, depending on the definition. As a result of continuous and prolific use, mainly in aviation firefighting foams, thousands of industrial and military installations have been found to contain contaminated soil, groundwater and surface water. Furthermore, because of the continuous contamination through PFAS containing commercial products, effluents and sewage sludge from WWTPs have been shown to be an important source of PFAS discharge into the aquatic environment. In the last few years, legacy PFAS (≥C4) have been found in various environments, including soil, water and wastewater, and their environmental pathways have been partly described. To get a better overview of the amount of “total PFAS,” sum parameter methods like total oxidizable precursor (TOP) assay and methods based on combustion ion chromatography (CIC) are in development. CIC results in data regarding the sum of absorbable organic fluorine (AOF) or extractable organic fluorine (EOF), which can also quantify other organically bound fluorine compounds such as fluorinated pesticides and pharmaceutical. Additionally, for research purpose several spectroscopical methods like X-ray photoelectron spectroscopy (XPS), fluorine K-edge X-ray absorption near-edge structure (XANES) spectroscopy, particular induced gamma-ray emission (PIGE) spectroscopy and 19F nuclear magnetic resonance (NMR) spectroscopy are available. Therefore, an overview is given on various analytical techniques for PFAS in environmental samples and their application possibilities discussed for different kind of PFAS compounds T2 - CleanUp 2022 CY - Adelaide, Australia DA - 11.09.2022 KW - PFAS KW - Combustion ion chromatography KW - XANES spectroscopy KW - Soil PY - 2022 AN - OPUS4-55743 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - Microspectroscopy reveals dust-derived apatite grains in highly-weathered soils from the Kohala climosequence on Hawaii N2 - Dust deposition is an important source of phosphorus (P) to many ecosystems. However, there is little evidence of dust-derived P-containing minerals in soils. Here we studied P forms along a well-described climatic gradient on Hawaii, which is also a dust deposition gradient. Soil mineralogy and soil P forms from six sites along the climatic gradient were analyzed with bulk (X-ray diffraction and P K-edge X-ray absorption near edge structure) and microscale (X-ray fluorescence, P K-edge X-ray absorption near edge structure, and Raman) analysis methods. In the wettest soils, apatite grains ranging from 5 to 30 μm in size were co-located at the micro-scale with quartz, a known continental dust indicator suggesting recent atmospheric deposition. In addition to colocation with quartz, further evidence of dust-derived P included backward trajectory modeling indicating that dust particles could be brought to Hawaii from the major global dust-loading areas in central Asia and northern Africa. Although it is not certain whether the individual observed apatite grains were derived from long-distance transport of dust, or from local dust sources such as volcanic ash or windblown fertilizer, these observations offer direct evidence that P-containing minerals have reached surface layers of highly-weathered grassland soils through atmospheric deposition. T2 - BESSY Science Seminar CY - Online meeting DA - 01.04.2022 KW - Phosphorus KW - Soil KW - X-ray diffraction KW - X-ray absorption near-edge structure (XANES) spectroscopy KW - Fertilizer KW - Raman spectroscopy KW - infrared spectroscopy PY - 2022 AN - OPUS4-54584 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - Mechanochemical remediation of PFAS in soils – Does it work? N2 - Current decontamination strategies of PFAS-burdened soils mainly consist of adsorption methods using adsorbents for fixation of PFAS in the ground. A second option is the utilization of a “pump and treat” process, cycling polluted soils through a washing plant leading to the concentration of the pollutants in the fine fraction. Only a subsequent, high-energy consuming pyrolysis process guarantees the total destruction of all fluorinated organic contaminants. These approaches are cost-intensive and not intended for the direct decomposition of all PFAS contaminants. Hence, there is a great demand for innovative developments and chemical treatment technologies, dealing with new strategies of tackling the PFAS problem. Thus, we investigated mechanochemical treatment of PFAS contaminated soils with various additives in a ball mill and analyzed the PFAS defluorination with gas chromatography mass spectrometry (GC-MS) and liquid chromatography tandem mass spectrometry (LC-MS/MS), respectively, as well as the fluoride mineralization by ion chromatography (IC) and fluorine K-edge X-ray absorption near-edge structure (XANES) spectroscopy. T2 - Baltic Sea PFAS Network Coffee Session CY - Online meeting DA - 25.08.2023 KW - Mechanochemical treatment KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Remediation KW - X-ray absorption near-edge structure (XANES) spectroscopy PY - 2023 AN - OPUS4-58114 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - Investigation of per and polyfluoroalkyl substances (PFAS) in soils and groundwater through fluorine K-edge XANES spectroscopy – potential for collaboration N2 - Per- and polyfluoroalkyl substances (PFAS) are a group of anionic, cationic and zwitterionic synthetic products, in which the hydrogen atoms on the carbon skeleton of at least one carbon atom have been completely replaced by fluorine atoms and which include more than 4730 compounds, depending on the definition. As a result of continuous and prolific use, mainly in aviation firefighting foams, thousands of industrial and military installations have been found to contain contaminated soil, groundwater and surface water. Furthermore, current decontamination strategies of PFAS-burdened soils mainly consist of adsorption methods using adsorbents for fixation of PFAS in the ground. Hence, there is a great demand for innovative developments and chemical treatment technologies, dealing with new strategies of tackling the PFAS problem. Thus, we investigated mechanochemical treatment of PFAS contaminated soils with various additives in a ball mill and analyzed the PFAS defluorination. In this presentation the advantages of fluorine K-edge X-ray absorption near-edge structure (XANES) spectroscopy for various environment samples are shown. T2 - SESAME-Germany Info Day CY - Hamburg, Germany DA - 21.04.2023 KW - Soil KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Synchotron KW - X-ray absorption near-edge structure (XANES) spectroscopy PY - 2023 AN - OPUS4-57365 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - PFAS analytics and their relation to PFAS remediation N2 - Per- and polyfluoroalkyl substances (PFAS) are a large group of more than 10,000 anionic, cationic, zwitterionic or neutral organofluorine surfactants. As a result of continuous and prolific use, mainly in aviation firefighting foams, thousands of industrial and military installations have been found to contain contaminated soil, groundwater and surface water. While liquid chromatography tandem mass spectrometry (LC-MS/MS) is commonly used technique to characterize targeted PFAS in environmental samples, there are more than 10,000 different PFAS known, which have various headgroups and properties. Therefore, several analytical techniques are available to analyse various groups or pools of PFAS or “all” PFAS as a sum parameter. Current decontamination strategies of PFAS-burdened soils mainly consist of adsorption methods using adsorbents for fixation of PFAS in the ground. A second option is the utilization of a “pump and treat” process, cycling polluted soils through a washing plant leading to the concentration of the pollutants in the fine fraction. Both approaches are cost-intensive and not intended for the direct decomposition of all PFAS contaminants. Hence, there is a great demand for innovative developments and chemical treatment technologies, dealing with new strategies of tackling the PFAS problem. Previously, mechanochemical treatment of polychlorinated organic compounds in soils showed an efficient dechlorination. Thus, we investigated mechanochemical treatment of PFAS contaminated soils with various additives in a ball mill and analyzed the PFAS defluorination with gas chromatography mass spectrometry (GC-MS) and liquid chromatography tandem mass spectrometry (LC-MS/MS), respectively, as well es the fluoride mineralization by ion chromatography (IC) and fluorine K-edge X-ray absorption near-edge structure (XANES) spectroscopy. T2 - International workshop of CAR-PFAS (Consortium for analysis and remediation of per- and polyfluoroalkyl substances) Japan CY - Tokyo, Japan DA - 17.10.2023 KW - Mechanochemical treatment KW - Per- and Polyfluoroalkyl substances (PFAS) KW - XANES spectroscopy KW - Soil PY - 2023 AN - OPUS4-58609 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - Detection, quantification, and treatment of per- and polyfluoroalkyl substances (PFAS) in groundwater (DFEAT-PFAS) N2 - Over the past century, a range of synthetic compounds have been produced to improve humanity’s quality of life. These include pharmaceuticals, plastics, and other chemical compounds that possess properties making them potentially harmful when released to the environment (e.g., ecological and health impacts to humans and animals). Per- and polyfluoroalkyl substances (PFAS) are a large group of chemicals used in the formulations of thousands of consumer goods, including aqueous film-forming foams used to suppress aviation fires in training scenarios, non-stick cookware, fast-food wrappers, water-repellent fabrics, medical equipment, and plastic and leather products. Because of the recent regulations and restrictions on the use of long chain (≥C8) PFAS a significant shift in the industry towards short (C4-C7) and ultrashort (C1-C3) chain alternatives has been recognized the last years. Due to the high polarity and water solubility of ultrashort PFAS, the potential for bioaccumulation is low. However, the high persistence of ultrashort-chain PFAS will result in environmental accumulation, especially in aquatic environments, leading to potential risks for aquatic organisms and increased human external exposure through drinking water. Ultrashort PFAS like trifluoroacetic acid (TFA) are low to moderately toxic to a range of organisms. In addition, ultrashort PFAS can penetrate natural and anthropogenic barriers and eventually reach drinking water sources. Because common drinking water treatment techniques do not sufficiently remove them, they may reach human consumption. In the project we are focusing on detecting and removing PFAS, especially ultrashort-chain PFAS from contaminated groundwater. We are designing passive sampling devices, which can collect and monitor the temporal profile of PFAS species in groundwater. This will allow us to analyze PFAS contaminations in German and Israeli groundwater using state-of-the-art and novel analytical techniques and understand the extent of contamination. In addition to quantification, PFAS contaminated groundwater will be treated via a two-stage process to produce PFAS-free drinking water. As ultrashort-chain PFAS are difficult to analyze with the current target (LC-MS/MS) and sum parameter (AOF, EOF) analysis methods, we additionally using gas chromatography – mass spectrometry (GC-MS). Therefore, an analytical method based on GC-MS is in development to analyze the volatile ultrashort-chain PFAS (TFA, PFPrA, TFMS, PFEtS, PFPrS, trifluoroethanol, pentafluoropropanol and hexafluoro isopropanol) directly in contaminated groundwater samples with the headspace technique and in eluates of organic solvents from the developed passive sampler after direct injection. Moreover, a two-stages process is designed to increase the low concentrations found in groundwater using novel membranes processes such as closed-circuit reverse osmosis (CCRO) and mixed matrix composite nanofiltration membranes (MMCM). Next, the rejected streams containing higher concentrations of PFAS will be treated by coagulation, and the remaining PFAS adsorbed onto carbonaceous nanomaterials (CNMs). The DEFEAT-PFAS project will result in the development of novel tools to detect, quantify, and remove PFAS, especially ultrashort-chain PFAS from contaminated groundwater, and will acquire a new understanding of the extent of these contaminations. T2 - Dioxin Konferenz CY - Maastricht, Netherlands DA - 10.09.2023 KW - Ground water KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Remediation PY - 2023 AN - OPUS4-58346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - Combining DGT and 31P NMR spectroscopy to determine phosphorus species in soil N2 - The amount of plant-available phosphorus (P) in soil strongly influences the yield of plants in agriculture. Therefore, various simple chemical extraction methods have been developed to estimate the plant-available P pools in soil. More recently, several experiments with the DGT technique have shown that it has a much better correlation to plant-available P in soils than standard chemical extraction methods (e.g. calcium-acetate-lactate (CAL), Colwell, Olsen, water) when soils with different characteristics are considered. However, the DGT technique cannot give information on the plant-available P species in the soil. Therefore, we combined DGT with solution 31P nuclear magnetic resonance (NMR) spectroscopy. This was achieved by using a modified DGT device in which the diffusive layer had a larger pore size, the binding layer incorporated an adsorption material with a higher capacity, and the device had a larger exposure area. The spectroscopic investigation was undertaken after elution of the deployed DGT binding layer in a NaOH solution. Adsorption tests using solutions of known organic P compounds showed that a sufficient amount of these compounds could be adsorbed on the binding layer in order for them to be analyzed by solution 31P NMR spectroscopy. Furthermore, various intermediates of the hydrolysis of trimetaphosphate in soil could be also analyzed over time. T2 - DGT Konferenz CY - Paris, France DA - 11.10.2023 KW - Soil KW - Phosphorus KW - Plant-availability PY - 2023 AN - OPUS4-58574 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - Per- and polyfluoroalkyl substances (PFAS) in sewage sludge and wastewater-based fertilizers and future PFAS remediation N2 - Per- and polyfluoroalkyl substances (PFAS) are a group of anionic, cationic and zwitterionic synthetic products, in which the hydrogen atoms on the carbon skeleton of at least one carbon atom have been completely replaced by fluorine atoms and which include more than 4730 compounds, depending on the definition. As a result of continuous and prolific use, mainly in aviation firefighting foams, thousands of industrial and military installations have been found to contain contaminated soil, groundwater and surface water. As a result of the perpetual use of PFAS containing products, effluents and sewage sludge from wastewater treatment plants (WWTPs) have been observed to be an important pathway for PFAS into the environment. In Germany, phosphorus and other nutrients from sewage sludge and wastewater should be recycled in WWTPs of cities with a large population. However, it is not clear if PFAS contamination from wastewater and sewage sludge end up in novel wastewater-based fertilizers. Normally, PFAS are analyzed using PFAS protocols typically with liquid chromatography tandem mass spectrometry (LC-MS/MS) quantification. To get a better overview of the amount of “total PFAS,” we applied sum parameter methods based on combustion ion chromatography (CIC) to screen the PFAS contaminations in various sewage sludge and wastewater-based fertilizers. Furthermore, current decontamination strategies of PFAS-burdened soils mainly consist of adsorption methods using adsorbents for fixation of PFAS in the ground. A second option is the utilization of a “pump and treat” process, cycling polluted soils through a washing plant leading to the concentration of the pollutants in the fine fraction. Only a subsequent, high-energy consuming pyrolysis process guarantees the total destruction of all fluorinated organic contaminants. Both approaches are cost-intensive and not intended for the direct decomposition of all PFAS contaminants. Hence, there is a great demand for innovative developments and chemical treatment technologies, dealing with new strategies of tackling the PFAS problem. T2 - Seminar of Ben-Gurion University CY - Midreshet Ben-Gurion, Israel DA - 02.11.2022 KW - PFAS KW - Sewage sludge KW - XANES spectroscopy PY - 2022 AN - OPUS4-56166 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - PFAS analysis by fluorine K-edge XANES spectroscopy and thermal and mechanochemical treatment N2 - Per- and polyfluoroalkyl substances (PFAS) are a large group of more than 12,000 organofluorine surfactants. As a result of continuous and prolific use, mainly in aviation firefighting foams, thousands of industrial and military installations have been found to contain contaminated soil, groundwater and surface water. . Current decontamination strategies of PFAS-burdened soils mainly consist of adsorption methods using adsorbents for fixation of PFAS in the ground. A second option is the utilization of a “pump and treat” process, cycling polluted soils through a washing plant leading to the concentration of the pollutants in the fine fraction. Both approaches are cost-intensive and not intended for the direct decomposition of all PFAS contaminants. Furthermore, the contaminated adsorbants have to be safely thermal treated for recovery. Hence, there is a great demand for innovative developments, dealing with new strategies of tackling the PFAS problem. Previously, mechanochemical treatment of polychlorinated organic compounds in soils showed an efficient dechlorination. Thus, we investigated mechanochemical treatment of PFAS contaminated soils with various additives in a ball mill. T2 - SEMICON CY - Tokyo, Japan DA - 12.12.2024 KW - Mechanochemical treatment KW - Per- and Polyfluoroalkyl substances (PFAS) KW - XANES spectroscopy KW - Thermal treatment PY - 2024 AN - OPUS4-62183 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - Quantification of Perfluorocarboxylic Acids in Water Samples via Static Headspace Gas Chromatography Coupled to Mass Spectrometry N2 - Perfluorocarboxylic acids (PFCAs) are one of the most prominent and studied subgroups of per- and polyfluoroalkyl substances (PFASs), which have attracted great interest in environmental and toxicology research due to their intensive use in combination with their persistence, mobility and potential threat to ecosystems and human health. The standard method to quantify PFCAs in water samples is liquid chromatography or, for additional quantification of ultrashort-chain PFCAs (carbon chain length of two or three carbon atoms) too, hydrophilic interaction liquid chromatography, in each case coupled with mass spectrometry. However, there are a lot of laboratories using MS coupled to headspace gas chromatography systems (HS-GC-MS), usually to quantify a wide range of volatile organic compounds. While PFCAs themselves are difficult to measure with HS-GC-MS in water samples, this challenge can be solved by derivatizing the acids to more volatile compounds, like esters. This approach could enable laboratories using HS-GC-MS to analyse and monitor PFCAs in environmental water samples. By following this idea, we successfully developed a HS-GC-MS method to quantify PFCAs in ultrapure water. Trifluoric acid (TFA), perfluoropropionic acid (PFPrA), perfluorobutanoic acid (PFBA) and perfluorooctanoic acid (PFOS) served as exemplary analytes of PFCAs, which were derivatized with methanol and concentrated sulfuric acid to form methyl esters. The method was optimized by varying different preparation and measurement parameters, leading to limits of detection and quantification in the two-digit ppt-range for all four analytes. The method was than tested on various real water samples, including tap and bottled water, groundwater, landfill leachate, treated wastewater and impinger water from a sewage sludge incineration experiment. Furthermore, snow samples from a ski slope were analysed too. TFA was the most frequently detected PFAA, with concentrations in the ppt and low ppb range. The detection and quantification of the remaining three PFCAs vary with the sample types and sampling location.Our results show that HS-GC-MS is suitable, and enables laboratories with this technique, to quantify PFCAs water samples. T2 - SETAC Europe CY - Vienna, Austria DA - 11.05.2025 KW - Per- and polyfluoroalkyl substances (PFAS) KW - Groundwater KW - GC-MS PY - 2025 AN - OPUS4-63094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - Detection, quantification, and treatment of per- and polyfluoroalkyl substances (PFAS) in groundwater (DFEAT-PFAS) N2 - Per- and polyfluoroalkyl substances (PFAS) are a large group of chemicals used in the formulations of thousands of consumer goods. Because of the recent regulations and restrictions on the use of long chain (≥C8) PFAS a significant shift in the industry towards short (C4-C7) and ultrashort (C1-C3) chain alternatives has been recognized the last years. Due to the high polarity and water solubility of ultrashort PFAS, the potential for bioaccumulation is low. However, the high persistence of ultrashort-chain PFAS will result in environmental accumulation, especially in aquatic environments, leading to potential risks for aquatic organisms and increased human external exposure through drinking water. Ultrashort PFAS like trifluoroacetic acid (TFA) are low to moderately toxic to a range of organisms. In the project we are focusing on detecting and removing PFAS, especially ultrashort-chain PFAS from contaminated groundwater. Therefore, we suggest developing and optimizing short- and ultrashort-chain PFAS detection, quantification, and removal. We will design passive sampling devices, which can collect and monitor the temporal profile of PFAS species in groundwater. This will allow us to analyze PFAS contaminations in German and Israeli groundwater using state-of-the-art novel analytical techniques. In addition, contaminated groundwater will be treated via a two-stage process, designed to concentrate the relatively low PFAS concentrations by novel membrane processes including closed-circuit reverse osmosis (CCRO) and mixed matrix composite nanofiltration membranes (MMCM). Afterwards the rejected streams, containing higher concentrations of PFAS will be treated by coagulation and the remaining PFAS adsorbed onto carbonaceous nanomaterials (CNMs). T2 - SETAC Europe CY - Vienna, Austria DA - 11.05.2025 KW - Per- and polyfluoroalkyl substances (PFAS) KW - Groundwater KW - Remediation PY - 2025 AN - OPUS4-63095 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - Current status of monitoring of PFAS release from industrial facilities N2 - Increasing studies report per- and polyfluoroalkyl substances (PFAS) in the ambient air and emissions from diverse industrial sources. Therefore, a comprehensive framework for characterizing PFAS emissions by identifying source-specific chemical fingerprints, evaluating emission pathways and assessing the impact of remediation technologies is needed. Depending on the type of PFAS, dedicated sampling and analytical procedures are required. Here, also the detection of possible PFAS transformation products, so-called products of incomplete combustion (PICs) are more mobile or toxic, is also of great interest to evaluate these technologies in terms of mineralisation potential and fluorine mass balance. T2 - PFAS study and technical exchange tour of MEE-FECO in Germany CY - Online meeting DA - 12.09.2025 KW - Per- and polyfluoroalkyl substances (PFAS) KW - Incineration PY - 2025 AN - OPUS4-64081 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - Per- and polyfluoroalkyl substances (PFAS) in ski waxes and snow from cross-country skiing in Germany - Comparative study of target analysis and sum parameters N2 - Per- and polyfluoroalkyl substances (PFAS) can enter the environment in different ways. Possible sources are PFAS containing consumer products. One common product that makes use of the material properties of PFAS is ski wax. Here, the PFAS ensure less frictional resistance, thus allows for increased speed. However, people who wax their ski with these waxes could absorb PFAS in their body, which can lead to health problems in the long term. Moreover, PFAS applied in ski wax abrade onto snow during use, which contaminates the environment. In our study, we analyzed various currently available ski waxes (2020s) and ski waxes from the 1980s with PFAS target analysis and with the sum parameters extractable organically bound fluorine (EOF), hydrolysable organically bound fluorine (HOF) and total fluorine (TF). Moreover, snow samples from the long-distance cross-country ski trail “Kammloipe” in the Ore mountains in Germany where sampled and analyzed with PFAS target analysis and the adsorbable organically bound fluorine (AOF) sum parameter to document the entry of PFAS from ski waxes into the environment. In opposite to the ski waxes from the 1980s much more ski waxes from the 2020s contain high (total) fluorine values. The highly fluorinated ski waxes contain up to approx. 6% of fluorine. The EOF and HOF sum parameters of the ski waxes are strongly decreased in comparison to the TF values (max. approx. 1000 mg/kg = 0.1%). But even the PFAS-free labeled ski waxes have EOF/HOF values in the low mg/kg range. In the snow samples from different spots of the ski trail, both the AOF sum parameter and the PFAS target analysis identified PFAS. Moreover, on a PFAS hotspot also soil samples were analyzed, which indicate that PFAS from the ski waxes adsorb after snow melting into the soil. Thus, our results show that the use of ski waxes is a possible contribution to the environmental contamination of PFAS, which is hopefully drastically reduced with the ban on fluorinated waxes by the International Ski and Snowboard Federation (FIS). T2 - SETAC Europe CY - Vienna, Austria DA - 11.05.2025 KW - Per- and polyfluoroalkyl substances (PFAS) KW - Contaminated Soil KW - Ski wax PY - 2025 AN - OPUS4-63096 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - Diffusive Gradients in Thin-films (DGT) technique as screening tool for per- and polyfluoroalkyl substances (PFAS) contamination in wastewater-based fertilizers N2 - Per- and polyfluoroalkyl substances (PFAS) are a large group of organofluorine surfactants used in the formulations of thousands of consumer goods, including aqueous film-forming foams (AFFF) used to suppress aviation fires in training scenarios, non-stick cookware, fast-food wrappers, water-repellent fabrics, medical equipment, and plastic and leather products. As a result of the perpetual use of PFAS containing products, effluents and sewage sludge from wastewater treatment plants (WWTPs) have been observed to be an important pathway for PFAS into the environment. In Germany, phosphorus and other nutrients from sewage sludge and wastewater should be recycled in WWTPs of cities with a large population. However, it is not clear if PFAS contamination from wastewater and sewage sludge end up in novel wastewater-based fertilizers. Normally, PFAS are analyzed using PFAS protocols typically with time-consuming extraction steps and LC-MS-MS quantification. However, for screening of PFAS contaminations in sewage sludge or wastewater-based fertilizers also passive sampler based on the Diffusive Gradients in Thin-films (DGT) technique can be used for the PFAS extraction. Afterwards, combustion ion chromatography (CIC) can be applied to analyse the “total” amount of PFAS on the passive sampler. Here, we show results from the DGT method in comparison to those of the extractable organic fluorine (EOF) method for a variety of wastewater-based fertilizers. Additionally, we analysed the adsorption of PFAS on the weak anion exchanger (WAX) based DGT passive sampler binding layer by infrared and fluorine K-edge X-ray adsorption near-edge structure (XANES) spectroscopy. T2 - SETAC Europe 2022 CY - Copenhagen, Denmark DA - 15.05.2022 KW - Passive sampling KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Sewage sludge KW - Wastewater PY - 2022 AN - OPUS4-54883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - Investigating the Thermal Decomposition of PFAS in a Full-Scale Commercial Hazardous Waste Incinerator N2 - Incineration is currently the only commercial full-scale technology available to destroy per- and polyfluoroalkyl substances (PFAS) in large solid and liquid waste streams. Given previous experience of dioxin formation during halogenated waste incineration, concerns about the emission of products of incomplete destruction (PIDs) from PFAS incineration exist. The overarching objective of this project is to track the fate of fluorine during full-scale hazardous waste incineration in order to demonstrate the readiness, viability, and level of safety for thermal PFAS destruction in various waste streams. The specific objectives of this project are (1) to enhance our understanding of key variables and conditions on PFAS incineration performance, (2) to identify major PIDs under insufficient treatment conditions, (3) to explore the catalytic role of fly ash and other process-relevant surfaces in thermal PFAS decomposition, and (4) to determine the potential formation of polyfluorinated dibenzodioxins and dibenzofurans. T2 - CEN/TC 264/WG48 Symposium - Emissions and ambient air - Determination of PFAS CY - Düsseldorf, Germany DA - 16.07.2025 KW - Per- and polyfluoroalkyl substances (PFAS) KW - Incineration PY - 2025 AN - OPUS4-63714 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - Current status of monitoring of PFAS release from industrial facilities N2 - Increasing studies report per- and polyfluoroalkyl substances (PFAS) in the ambient air and emissions from diverse industrial sources. Therefore, a comprehensive framework for characterizing PFAS emissions by identifying source-specific chemical fingerprints, evaluating emission pathways and assessing the impact of remediation technologies is needed. Depending on the type of PFAS, dedicated sampling and analytical procedures are required. Here, also the detection of possible PFAS transformation products, so-called products of incomplete combustion (PICs) are more mobile or toxic, is also of great interest to evaluate these technologies in terms of mineralisation potential and fluorine mass balance. T2 - Consortium for analysis and remediation of per- and polyfluoroalkyl substances (CAR-PFAS Japan) visit Uni Örebro CY - Online meeting DA - 09.10.2025 KW - Per- and polyfluoroalkyl substances (PFAS) KW - Incineration KW - Remediation PY - 2025 AN - OPUS4-64318 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - Per- and Polyfluoroalkyl Substances (PFAS) in Sewage Sludge and Wastewater-based Fertilizers N2 - Per- and polyfluoroalkyl substances (PFAS) are chemicals which were developed to improve humanity’s quality of life. Due to their high chemical stability and resistance to degradation by heat or acids, PFAS were used in a variety of consumer products. The continuous use of PFAS in household products and the discharge of PFAS from industrial plants into the sewer system resulted in the contamination of effluents and sewage sludge from wastewater treatment plants (WWTPs) (Roesch et al. 2022). Since sewage sludge is often used as fertilizer, its application on agricultural soils has been observed as a significant entry path for PFAS into the environment, specifically in our food chain. In Germany the sewage sludge/biosolid application on agricultural land was banned with the amendment of the German Sewage Sludge Ordinance and by 2029 sewage sludge application will be totally prohibited. However, phosphorus (P) from sewage sludge should still be recycled in WWTPs of cities with a population larger than 50,000 residents. To produce high-quality P-fertilizers for a circular economy, PFAS and other pollutants (e.g. pesticides and pharmaceuticals) must be separated from sewage sludge. Due to the strong diversity of industrial PFAS usage it is not clear if a safe application of novel recycled P-fertilizers from WWTPs can be guaranteed. Therefore, we analyzed various sewage sludges and wastewater-based fertilizers. Sewage sludge (SL) samples from various WWTPs in Germany and Switzerland, six sewage sludge ashes (SSA) from Germany, six thermally treated SL and SSA samples with different additives (temperatures: 700-1050 °C), two pyrolyzed SL samples (temperature: 400 °C) and two struvite samples from Germany and Canada were analyzed. The goal was to quantify PFAS in sewage sludges and wastewater-based P-fertilizers with the sum parameter extractable organic fluorine (EOF) by combustion ion chromatography (CIC). The results were compared with data from classical LC-MS/MS target analysis as well as selected samples by HR-MS suspect screening. The EOF values of the SLs mainly range between 154 and 538 µg/kg except for one SL which showed an elevated EOF value of 7209 µg/kg due to high organofluorine contamination. For the SSA samples the EOF values were lower and values between LOQ (approx. 60 µg/kg) and 121 µg/kg could be detected. For the pyrolyzed SLs no EOF values above the LOQ were detected. Moreover, the two wastewater-based struvite fertilizers contain 96 and 112 µg/kg EOF, respectively. In contrast to the EOF values, the sum of PFAS target values were relatively low for all SLs. Additional applied PFAS HR-MS suspect screening aimed to tentatively identify PFAS that could contribute to the hitherto unknown part of the EOF value. The majority of the detected fluorinated compounds are legacy PFAS such as short- and long-chain perfluorocarboxylic acids (PFCA), perfluorosulfonic acids (PFSA), polyfluoroalkyl phosphate esters (PAPs) and perfluorophosphonic acids (PFPA). Moreover, fluorinated pesticides, pharmaceutical as well as aromatic compounds were also identified, which are all included in the EOF parameter. Our research revealed that the current PFAS limit of 100 µg/kg for the sum of PFOS + PFOA in the German Fertilizer Ordinance is no longer up to date. Since the number of known PFAS already exceeds 10,000, the ordinance limit should be updated accordingly. Recent regulations and restrictions on using long-chain PFAS (≥C8) have resulted in a significant shift in the industry towards (ultra-)short-chain alternatives, and other, partly unknown, emerging PFAS. Ultimately, also fluorinated pesticides and pharmaceuticals, which end up as ultrashort PFAS in the WWTPs, have to be considered as possible pollutants in fertilizers from wastewater, too. T2 - Dioxin Konferenz CY - Maastricht, Netherlands DA - 10.09.2023 KW - Combustion Ion Chromatography KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Sewage sludge KW - Fertilizer PY - 2023 AN - OPUS4-58345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - Combining DGT and combustion ion chromatography (CIC) as screening tool for per- and polyfluoroalkyl substances (PFAS) contamination in wastewater-based fertilizers N2 - Per- and polyfluoroalkyl substances (PFAS) are a large group of organofluorine surfactants used in the formulations of thousands of consumer goods. The continuous use of PFAS in household products and the discharge of PFAS from industrial plants into the sewer system have been resulted in contaminated effluents and sewage sludge from wastewater treatment plants (WWTPs) which became an important pathway for PFAS into the environment. Because sewage sludge is often used as fertilizer its application on agricultural soils has been observed as significant input path for PFAS into our food chain. To produce high-quality phosphorus fertilizers for a circular economy from sewage sludge, PFAS and other pollutants (e.g. pesticides and pharmaceuticals) must be separated from sewage sludge. Normally, PFAS are analyzed using PFAS protocols typically with time-consuming extraction steps and LC-MS/MS target quantification. However, for screening of PFAS contaminations in wastewater-based fertilizers also the DGT technique can be used for the PFAS extraction. Afterwards, combustion ion chromatography (CIC) can be applied to analyze the “total” amount of PFAS on the DGT binding layer. The DGT method was less sensitive and only comparable to the extractable organic fluorine (EOF) method values of the fertilizers in samples with >150 µg/kg, because of different diffusion properties for various PFAS, but also kinetic exchange limitations. However, the DGT approach has the advantage that almost no sample preparation is necessary. Moreover, the PFAS adsorption on the DGT binding layer was investigated via surface sensitive spectroscopical methods, such as Fourier-transform infrared (FT-IR) and fluorine K-edge X-ray absorption near-edge structure (XANES) spectroscopy. T2 - DGT Konferenz CY - Paris, France DA - 11.10.2023 KW - Combustion Ion Chromatography KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Sewage sludge PY - 2023 AN - OPUS4-58575 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - Per- and Polyfluoroalkyl Substances (PFAS): from analytical methods to thermal and mechanochemical treatment N2 - Per- and polyfluoroalkyl substances (PFAS) are a large group of more than 12,000 organofluorine surfactants. As a result of continuous and prolific use, mainly in aviation firefighting foams, thousands of industrial and military installations have been found to contain contaminated soil, groundwater and surface water. . Current decontamination strategies of PFAS-burdened soils mainly consist of adsorption methods using adsorbents for fixation of PFAS in the ground. A second option is the utilization of a “pump and treat” process, cycling polluted soils through a washing plant leading to the concentration of the pollutants in the fine fraction. Both approaches are cost-intensive and not intended for the direct decomposition of all PFAS contaminants. Furthermore, the contaminated adsorbants have to be safely thermal treated for recovery. Hence, there is a great demand for innovative developments, dealing with new strategies of tackling the PFAS problem. Previously, mechanochemical treatment of polychlorinated organic compounds in soils showed an efficient dechlorination. Thus, we investigated mechanochemical treatment of PFAS contaminated soils with various additives in a ball mill. T2 - Al-Balqa Applied University seminar CY - Al-Salt, Jordan DA - 23.02.2025 KW - Combustion Ion Chromatography KW - Per- and Polyfluoroalkyl substances (PFAS) KW - XANES spectroscopy KW - Thermal treatment KW - Remediation PY - 2025 AN - OPUS4-62617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - Analysis of fluorine/PFAS in battery black mass at HESEB N2 - Lithium iron phosphate (LiFePO4) batteries are a safe, cost-effective alternative to traditional lithium-ion batteries, but industrial-scale recycling is not yet available. The recycling process faces challenges, especially in purifying materials like lithium, phosphate, and iron, and managing fluorine contamination from fluoropolymers and salts (including PFAS). Fluorine K-edge XANES spectroscopy was used to analyze the chemical states of fluorine in the recycled materials for a safe reuse of elements and defluorination. T2 - SESAME – Germany Support and Networking Meeting CY - Hamburg, Germany DA - 30.06.2025 KW - Per- and polyfluoroalkyl substances (PFAS) KW - Battery PY - 2025 AN - OPUS4-63560 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - Can we use passive samplers for the determination of chromium(VI) in phosphorus fertilizers? N2 - Phosphorus (P) fertilizers from secondary resources became increasingly important in the last years. However, these novel P-fertilizers can also contain toxic pollutants. Chromium in its hexavalent state (Cr(VI)) is regulated with low limit values for agricultural products due to its high toxicity, but the determination of Cr(VI) in these novel fertilizer matrices can be hampered by redox processes that lead to false results. Thus, we applied the passive sampler technique Diffusive Gradients in Thin-films (DGT) for the determination of Cr(VI) in fertilizers and compared the results with the standard wet chemical extraction method (German norm DIN EN 15192) and Cr K-edge X-ray absorption near-edge structure (XANES) spectroscopy. We determined an overall good correlation between the wet chemical extraction and the DGT method. DGT was very sensitive and in most cases selective for the analysis of Cr(VI) in P-fertilizers. However, hardly soluble Cr(VI) compounds cannot be detected with the DGT method since only mobile Cr(VI) is analyzed. Furthermore, Cr K-edge XANES spectroscopy showed that the DGT binding layer also adsorbs small amounts of mobile Cr(III) compounds which leads to overestimated Cr(VI) values. The results of certain types of P-fertilizers containing mobile Cr(III) or partly immobile Cr(VI), showed that optimization of the DGT method is required to avoid over- or underestimation of Cr(VI). T2 - International Passive Sampling Workshop (IPSW) 2021 virtual CY - Online meeting DA - 04.11.2021 KW - Phosphorus KW - Sewage sludge KW - Chromium KW - Fertilizer PY - 2021 AN - OPUS4-53699 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vo, P. H.N. A1 - Vogel, Christian A1 - Nguyen, H. T.M. A1 - Hamilton, B. R. A1 - Thai, P. K. A1 - Roesch, Philipp A1 - Simon, Franz-Georg A1 - Mueller, J. F. T1 - µ-X-ray fluorescence (XRF) and fluorine K-edge µ-X-ray absorption near-edge structure (XANES) spectroscopy for detection of PFAS distribution in the impacted concrete N2 - An improved understanding of the distribution of per- and polyfluoroalkyl substances (PFAS) in PFAS-impacted concrete is important for risk management and decontamination of PFAS. This study incorporates µ-X-ray fluorescence (µ-XRF) and fluorine K-edge µ-X-ray absorption near-edge structure (µ-XANES) spectroscopy to gain non-destructive insights into PFAS distribution in the impacted concrete. The μ-XRF and μ-XANES spectroscopy provided additional details on the detection of PFAS, which were not detected by the desorption electrospray ionization (DESI) imaging method conducted previously. The shorter chain PFAS were found on the top part of the concrete core (0.5 cm), and longer chain PFAS were mostly at the bottom part of the concrete core (5 cm). The inorganic fluorine fraction was also detected, and it likely hampered the detection of organic fluorine such as PFAS in the concrete. Thus, this non-destructive technique is an complementary approach to detect PFAS in contaminated concrete. KW - Beton KW - Per- and Polyfluoroalkyl substances (PFAS) KW - XANES spectroscopy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-616711 DO - https://doi.org/10.1016/j.hazl.2024.100134 SN - 2666-9110 VL - 5 SP - 1 EP - 5 PB - Elsevier B.V. AN - OPUS4-61671 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -