TY - JOUR A1 - Rieger, J. A1 - Colla, V. A1 - Matino, I. A1 - Branca, T. A. A1 - Stubbe, G. A1 - Panizza, A. A1 - Brondi, C. A1 - Falsafi, M. A1 - Hage, J. A1 - Wang, X. A1 - Voraberger, B. A1 - Fenzl, T. A1 - Masaguer, V. A1 - Faraci, E. L. A1 - di Sante, L. A1 - Cirilli, F. A1 - Loose, Florian A1 - Thaler, C. A1 - Soto, A. A1 - Frittella, P. A1 - Foglio, G. A1 - di Cecca, C. A1 - Tellaroli, M. A1 - Corbella, M. A1 - Guzzon, M. A1 - Malfa, E. A1 - Morillon, A. A1 - Algermissen, D. A1 - Peters, K. A1 - Snaet, D. T1 - Residue Valorization in the Iron and Steel Industries: Sustainable Solutions for a Cleaner and More Competitive Future Europe N2 - The steel industry is an important engine for sustainable growth, added value, and high-quality employment within the European Union. It is committed to reducing its CO2 emissions due to production by up to 50% by 2030 compared to 1990′s level by developing and upscaling the technologies required to contribute to European initiatives, such as the Circular Economy Action Plan (CEAP) and the European Green Deal (EGD). The Clean Steel Partnership (CSP, a public–private partnership), which is led by the European Steel Association (EUROFER) and the European Steel Technology Platform (ESTEP), defined technological CO2 mitigation pathways comprising carbon direct avoidance (CDA), smart carbon usage SCU), and a circular economy (CE). CE ap-proaches ensure competitiveness through increased resource efficiency and sustainability and consist of different issues, such as the valorization of steelmaking residues (dusts, slags, sludge) for internal recycling in the steelmaking process, enhanced steel recycling (scrap use), the use of secondary carbon carriers from non-steel sectors as a reducing agent and energy source in the steelmaking process chain, and CE business models (supply chain analyses). The current paper gives an overview of different technological CE approaches as obtained in a dedicated workshop called “Resi4Future—Residue valorization in iron and steel industry: sustainable solutions for a cleaner and more competitive future Europe” that was organized by ESTEP to focus on future challenges toward the final goal of industrial deployment. KW - Circular economy KW - Steelmaking residues KW - Clean steel PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530350 DO - https://doi.org/10.3390/met11081202 VL - 11 IS - 8 SP - 1202 PB - MDPI AN - OPUS4-53035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schraut, Katharina A1 - Adamczyk, Burkart A1 - Simon, Sebastian A1 - von Werder, Julia A1 - Meng, Birgit A1 - Stephan, Dietmar A1 - Adam, Christian T1 - Hydraulic reactivity of alite rich material from post-treated basic oxygen furnace slags N2 - Basic oxygen furnace slags (BOFS) are a by-product of steel production. In 2016, 10.4 Mt of BOFS were produced in the European Union (EU). The main part of BOFS is used in road construction, earthwork and hydraulic engineering. A smaller part is returned to the metallurgical circle, used as fertilizer or landfilled. However, it is also possible to produce higher value products from BOFS. For example, many researchers have investigated the possibility of producing Portland cement clinker and crude iron from BOFS by a carbothermal post-treatment. In this study, German BOFS was reduced in a small-scale electric arc furnace using petrol coke as reducing agent. The carbothermal treatment reduces the iron oxides in the BOFS to metallic iron, which accumulates at the bottom of the furnace by density separation. In addition to metallic iron, the process generates a mineral product rich in the tricalcium silicate solid solution alite. As the main constituent of Portland cement clinker, the hydraulic reactive mineral alite is of high economic importance. In previous studies, the hydraulic reactivity of the mineral product was investigated by testing the compressive strength of blends with 70 wt.% ordinary Portland cement (OPC). Recent investigations focused on the hydraulic properties of the pure mineral product from the reduced BOFS. The heat of hydration of the mineral product was measured by isothermal calorimetry and compared with the heat of hydration of a synthetic low-iron slag and OPC. In addition, the formation of hydration products was investigated with differential scanning calorimetry (DSC) and x-ray diffraction analysis (XRD) on freeze-dried samples after defined curing times. The results of the calorimetric measurements indicate that the mineral product produced less heat of hydration and its reaction was delayed compared to the synthetic low-iron slag and OPC. Hydration products such as portlandite and calcium silicate hydrates (C-S-H) formed later and in lower amounts. The production of a hydraulic material from BOFS by reductive treatment is of great interest to both the cement and steel industries. The substitution of cement clinker in OPC with a hydraulic material such as reduced BOFS leads to a reduction in greenhouse gas emissions from cement production. The steel industry benefits from an application for its by-products that avoids cost expensive landfilling and may even bring economic advantages. Furthermore, it may be possible to return the recovered crude iron to production. T2 - 3rd European Mineralogical Conference CY - Cracow, Poland DA - 30.08.2021 KW - BOFS KW - Calcium silicate KW - Hydraulic reactivity PY - 2021 AN - OPUS4-53473 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schraut, Katharina A1 - Adamczyk, Burkart A1 - Simon, Sebastian A1 - von Werder, Julia A1 - Meng, Birgit A1 - Stephan, Dietmar A1 - Adam, Christian T1 - Portland cement clinker from reduced basic oxygen furnace slag N2 - Basic oxygen furnace slag (BOFS) is a by-product of the steelmaking process, of which about 10.4 Mt are produced annually in the European Union. Besides its predominant use in road construction, earthwork, and hydraulic engineering, it is also possible to use BOFS as a source material for Portland cement clinker. The main difference in the chemical composition of BOFS from the chemical composition of Portland cement clinker is its high content of iron oxides (7-50 wt.%). In recent decades, many researchers have investigated the production of both Portland cement clinker and crude iron from BOFS via thermochemical reductive treatment. Carbothermal treatment of liquid BOFS causes reduction of iron oxides to metallic iron, which separates from the mineral phase due to its higher density. In this study, German BOFS was reduced in a small-scale electric arc furnace using petrol coke as reducing agent. The produced low-iron mineral product was chemically similar to Portland cement clinker and contained the most important Portland cement mineral alite (Ca3SiO5) as main component. Besides alite, the mineral product contained other Portland cement clinker constituents such as belite (β-Ca2SiO4) and tricalcium aluminate (Ca3Al2O6). The production of Portland cement clinker and crude iron from BOFS has economic and ecological benefits for both the cement and steel industry. Cement clinker from reduced BOFS may be used as a substitute for cement clinker from conventional cement production, thereby CO2 emissions will be reduced. The steel industry benefits from a high-value application for its by-products that avoids cost expensive landfilling and may even bring economic advantages. However, reductive treatment requires high temperatures and, for economic reasons, has to be carried out immediately after casting of the liquid BOFS, which is a logistical challenge for most steel plants. A cost-benefit analysis is therefore essential. T2 - European Congress and Exhibition on Advanced Materials and Processes CY - Online meeting DA - 13.09.2021 KW - BOFS KW - Portland Cement KW - Hydraulic reactivity PY - 2021 AN - OPUS4-53475 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Piehl, Patrick A1 - Weingart, E. A1 - Adam, Christian T1 - Recovery of zinc from steel mill dusts in the rotary kiln by joint treatment with chloride-containing residues N2 - During iron and steel production, several by-products such as slags, dusts and sludges are generated in addition to pig iron and steel as primary products. While established recycling routes exist for slags, there are still considerable recycling problems for other residual materials, especially for filter dusts and sludges containing zinc and lead from waste gas purification. However, the high heavy metal contents make landfilling these dusts and sludges cost-intensive and ecologically problematic. In addition, the relatively high zinc and iron loads represent a valuable material potential, which can make reprocessing of the material with recovery of the zinc and iron loads as secondary raw materials ecologically as well as economically attractive. Against this background, a process is being developed in a cooperative project between Ferro Duo GmbH and the Federal Institute for Materials Research and Testing (BAM), in which the heavy metals (zinc, lead, cadmium, etc.) contained in the filter dusts and sludges are selectively converted into chlorides in a thermochemical process after the addition of a chlorine donor and evaporated at temperatures between 650 and 1100 °C. This process can be used to recover zinc and iron as secondary raw materials. Experiments to date in a batch reactor show that >99% of the zinc and lead can be removed from the treated material. However, a continuous process is necessary for an economical process, which is why this process is transferred to a rotary kiln and relevant process parameters are identified and optimized. The results of these investigations will be presented here. T2 - European Congress and Exhibition on Advanced Materials and Processes 2021 CY - Online meeting DA - 13.09.2021 KW - Elektroofenstaub KW - Gichtgasschlamm KW - Recycling KW - Ressourcenrückgewinnung KW - Zink PY - 2021 AN - OPUS4-53290 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Loose, Florian T1 - CF Pyro: Impressions of Applying Carbon Fibers at Semi-Industrial Scale as Reductant in Pyrometallurgy N2 - The increasing use of carbon fiber reinforced polymers (CFRP), as lightweight materials essential for the transformation, demands for a safe treatment option of carbon fiber (CF) containing waste streams. Because of their low reactivity towards oxidation processes, CF can neither be treated in a conventional nor hazardous waste incineration plant. Even the extremely high temperature in a cement rotary kiln does not lead to full conversion. To increase the sustainability of CF, other processes need to be investigated. Opening other reaction pathways, using CF waste streams as secondary resource in pyrometallurgy to replace fossil carbon, can be a solution for a safe and sustainable treatment. After first small scale experiments, CF containing waste streams were used as reductant in a semi-industrial scale electric arc furnace (EAF). First results and impressions are presented. T2 - Meeting mit Projektpartner GMH CY - Online meeting DA - 02.03.2023 KW - Cabonfasern KW - CFK KW - Recycling PY - 2023 AN - OPUS4-58090 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Loose, Florian T1 - CF Pyro: Safe Treatment of CFRP Waste for a Sustainable Future N2 - The increasing use of carbon fiber reinforced polymers (CFRP), as lightweight materials essential for the transformation, demands for a safe treatment option of carbon fiber (CF) containing waste streams. Because of their low reactivity towards oxidation processes, CF can neither be treated in a conventional nor hazardous waste incineration plant. Even the extremely high temperature in a cement rotary kiln does not lead to full conversion. To increase the sustainability of CF, other processes need to be investigated. Opening other reaction pathways, using CF waste streams as secondary resource in pyrometallurgy to replace fossil carbon, can be a solution for a safe and sustainable treatment. To support the industrial application, experiments on different scales were conducted. Here, results of thermochemical investigations, reactivity studies, crucible experiments and pilot plat trials are reported. T2 - CU Projektforum CY - Online meeting DA - 19.01.2023 KW - Cabonfasern KW - CFK KW - Recycling PY - 2023 AN - OPUS4-58091 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker A1 - Kalinka, Gerhard A1 - Loose, Florian T1 - Carbon fibre composites exemplarily research at BAM N2 - Lightweighting as a cross-cutting technology contributes significantly to achieve the European Green Deal goals. Based on, but not limited to, advanced materials and production technologies, the demand for natural resources and CO2 emmissions are reduced by lightweighting during production, as well as use phase. Therefore, lightweighting is a crucial transformation technology assisting in decoupling economic growth from resource consumption. In this manner, lightweighting contributes significantly as a key technology of relevance for many industrial sectors such as energy, mobility, and infrastructure, towards resource efficiency, climate action and economic strength, as well as a resilient Europe. To strengthen international partnerships, addressing global issues of today at the edge of science with high performance lightweight material based on carbon fibers, an overview about the BAM expertise in carbon fiber reinforced materials is given. T2 - Meeting KCarbon CY - Berlin, Germany DA - 15.06.2023 KW - Lightweighting KW - Carbon Fibers KW - Recycling KW - Push-out Test KW - multi scale testing PY - 2023 AN - OPUS4-58094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Singh, Amit Kumar A1 - Mishra, Biswajit A1 - Sinha, Om Prakash T1 - Reduction Kinetics of Fluxed Iron Ore Pellets Made of Coarse Iron Ore Particles N2 - The present work demonstrates a sustainable approach of using relatively coarser iron ore particles for ironmaking. The motivation is to reduce the energy consumption in the milling of the iron ore by utilizing coarser iron ore particles (+0.05 mm) and to select a suitable binder for improving pellet properties. Iron ore fines in the range of 0.05–0.25 mm was selected and classified into three size ranges. Fluxed iron ore pellets were prepared using lime as a binder for the basicity of 0, 1, and 2. Reduction of these pellets with a packed bed of coal fines was performed in the temperature range of 900–1200 °C for a duration of 30–120 min. The direct reduction kinetics of the iron ore pellets were studied by employing diffusion and chemical reaction control models to the experimental data. The results show that pellets made with coarser iron ore particles have improved reduction behavior and kinetics. The reduction reaction is found to be a mixed control. The activation energy for the reduction reaction varies from 44.3 to 74.76 kJ mol−1 as iron ore particle size decreases from 0.25 to 0.05 mm and basicity increases from 0 to 2. KW - Materials Chemistry KW - Metals and Alloys KW - Process Metallurgy KW - Iron making PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598326 DO - https://doi.org/10.1002/srin.202300669 SN - 1611-3683 IS - 2300669 SP - 1 EP - 9 PB - Wiley VHC-Verlag AN - OPUS4-59832 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jovičević-Klug, Matic A1 - Souza Filho, Isnaldi R. A1 - Springer, Hauke A1 - Adam, Christian A1 - Raabe, Dierk T1 - Green steel from red mud through climate-neutral hydrogen plasma reduction N2 - AbstractRed mud is the waste of bauxite refinement into alumina, the feedstock for aluminium production1. With about 180 million tonnes produced per year1, red mud has amassed to one of the largest environmentally hazardous waste products, with the staggering amount of 4 billion tonnes accumulated on a global scale1. Here we present how this red mud can be turned into valuable and sustainable feedstock for ironmaking using fossil-free hydrogen-plasma-based reduction, thus mitigating a part of the steel-related carbon dioxide emissions by making it available for the production of several hundred million tonnes of green steel. The process proceeds through rapid liquid-state reduction, chemical partitioning, as well as density-driven and viscosity-driven separation between metal and oxides. We show the underlying chemical reactions, pH-neutralization processes and phase transformations during this surprisingly simple and fast reduction method. The approach establishes a sustainable toxic-waste treatment from aluminium production through using red mud as feedstock to mitigate greenhouse gas emissions from steelmaking. KW - Multidisciplinary PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594424 DO - https://doi.org/10.1038/s41586-023-06901-z SN - 0028-0836 VL - 625 IS - 7996 SP - 703 EP - 709 PB - Springer Science and Business Media LLC AN - OPUS4-59442 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maulas, Kryzzyl M. A1 - Paredes, Charla S. A1 - Tabelin, Carlito Baltazar A1 - Jose, Mark Anthony A1 - Opiso, Einstine M. A1 - Arima, Takahiko A1 - Park, Ilhwan A1 - Mufalo, Walubita A1 - Ito, Mayumi A1 - Igarashi, Toshifumi A1 - Phengsaart, Theerayut A1 - Villas, Edrhea A1 - Dagondon, Sheila L. A1 - Metillo, Ephrime B. A1 - Uy, Mylene M. A1 - Manua, Al James A. A1 - Villacorte-Tabelin, Mylah T1 - Isolation and Characterization of Indigenous Ureolytic Bacteria from Mindanao, Philippines: Prospects for Microbially Induced Carbonate Precipitation (MICP) N2 - Microbially induced carbonate precipitation (MICP), a widespread phenomenon in nature, is gaining attention as a low-carbon alternative to ordinary Portland cement (OPC) in geotechnical engineering and the construction industry for sustainable development. In the Philippines, however, very few works have been conducted to isolate and identify indigenous, urease-producing (ureolytic) bacteria suitable for MICP. In this study, we isolated seven, ureolytic and potentially useful bacteria for MICP from marine sediments in Iligan City. DNA barcoding using 16s rDNA identified six of them as Pseudomonas stutzeri, Pseudomonas pseudoalcaligenes, Bacillus paralicheniformis, Bacillus altitudinis, Bacillus aryabhattai, and Stutzerimonas stutzeri but the seventh was not identified since it was a bacterial consortium. Bio-cementation assay experiments showed negligible precipitation in the control (without bacteria) at pH 7, 8, and 9. However, precipitates were formed in all seven bacterial isolates, especially between pH 7 and 8 (0.7–4 g). Among the six identified bacterial species, more extensive precipitation (2.3–4 g) and higher final pH were observed in S. stutzeri, and B. aryabhattai, which indicate better urease production and decomposition, higher CO2 generation, and more favorable CaCO3 formation. Characterization of the precipitates by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS) and attenuated total reflectance Fourier transform spectroscopy (ATR-FTIR) confirmed the formation of three carbonate minerals: calcite, aragonite, and vaterite. Based on these results, all six identified indigenous, ureolytic bacterial species from Iligan City are suitable for MICP provided that the pH is controlled between 7 and 8. To the best of our knowledge, this is the first report of the urease-producing ability and potential for MICP of P. stutzeri, P. pseudoalcaligenes, S. stutzeri, and B. aryabhattai. KW - Calcium carbonate KW - Microbially induced carbonate precipitation (MICP) KW - Ureolytic bacteria PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600888 DO - https://doi.org/10.3390/min14040339 VL - 14 IS - 4 SP - 1 EP - 15 PB - MDPI AN - OPUS4-60088 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -