TY - JOUR A1 - Seeger, Stefan A1 - Osan, J. A1 - Czömpöly, O. A1 - Gross, A. A1 - Stosnach, H. A1 - Stabile, L. A1 - Ochsenkuehn-Petropoulou, M. A1 - Tsakanika, L. A1 - Lymperopoulou, T. A1 - Goddard, S. A1 - Fiebig, M. A1 - Gaie-Levrel, F. A1 - Kayser, Y. A1 - Beckhoff, B. T1 - Quantification of Element Mass Concentrations in Ambient Aerosols by Combination of Cascade Impactor Sampling and Mobile Total Reflection X-ray Fluorescence Spectroscopy JF - Atmosphere N2 - Quantitative chemical analysis of airborne particulate matter (PM) is vital for the understanding of health effects in indoor and outdoor environments, as well as for enforcing EU air quality regulations. Typically, airborne particles are sampled over long time periods on filters, followed by lab-based analysis, e.g., with inductively coupled plasma mass spectrometry (ICP-MS). During the EURAMET EMPIR AEROMET project, cascade impactor aerosol sampling is combined for the first time with on-site total reflection X-ray fluorescence (TXRF) spectroscopy to develop a tool for quantifying particle element compositions within short time intervals and even on-site. This makes variations of aerosol chemistry observable with time resolution only a few hours and with good size resolution in the PM10 range. The study investigates the proof of principles of this methodological approach. Acrylic discs and silicon wafers are shown to be suitable impactor carriers with sufficiently smooth and clean surfaces, and a non-destructive elemental mass concentration measurement with a lower limit of detection around 10 pg/m3 could be achieved. We demonstrate the traceability of field TXRF measurements to a radiometrically calibrated TXRF reference, and the results from both analytical methods correspond satisfactorily. KW - TXRF KW - Reference method KW - Cascade impactor KW - Ambient aerosols KW - Particles KW - Air quality monitoring KW - Element mass concentration KW - Size resolved chemical composition KW - Time resolved chemical composition KW - ICP-MS PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521860 UR - http://www.aerometproject.com/ DO - https://doi.org/10.3390/atmos12030309 SN - 2073-4433 VL - 12 IS - 3 SP - 309 EP - 337 PB - MDPI CY - Basel, Schweiz AN - OPUS4-52186 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Seeger, Stefan A1 - Pollakowski-Herrmann, Beatrix A1 - Osan, J. A1 - Gross, A. A1 - Stosnach, H. A1 - Kayser, Y. A1 - Beckhoff, B. T1 - Quantification of element mass concentrations in aerosols by combination of cascade impactor sampling and in-situ TXRF Spectroscopy N2 - A mobile Bruker S2 Picofox TXRF spectrometer has been used in two field campaigns within the EMPIR env07 AEROMET project for the on-site analysis of cascade impactor aerosol samples.The results show that even at moderate air pollution levels – i.e.PM10 fairly below 20 μg/m³ - element mass concentrations in air in the range of 100 pg/m³could be measured in up to 13 size bins after sampling times of less than only 0.5 days. T2 - UFP 2019 Ultrafeinstaub in der Atmosphäre und in Innenräumen, 3. Symposium CY - Technische Universität Berlin, Germany DA - 19.09.2019 KW - TXRF ambient air aerosol chemical analysis aerosol element composition KW - Aerosol KW - TXRF KW - Cascade impactor KW - Aerosol element alanysis KW - Aerosol element mass concentration PY - 2019 AN - OPUS4-49580 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vigna, L. A1 - Gottschalk, Martin A1 - Cacocciola, N. A1 - Verna, A. A1 - Marasso, S. L. A1 - Seeger, Stefan A1 - Pirri, C.F. A1 - Cocuzza, M. T1 - Flexible and reusable parylene C mask technology for applications in cascade impactor air quality monitoring systems JF - Micro and Nano Engineering N2 - The development of traceable new methodologies to quantify elemental air pollutants in particulate matter (PM) supports modernization of methods used in air quality monitoring networks in Europe. In the framework of the EURAMET EMPIR AEROMET II project, the combination of cascade impactor aerosol sampling and total reflection X-ray fluorescence elemental spectroscopy (TXRF) was investigated. This technique requires a traceable calibration based on reference samples. This paper describes a new, simple and effective method to produce such reference samples using flexible, reusable, and low-cost parylene C shadow masks, fabricated by photolithographic steps. These shadow masks can be used to produce reference samples that mimic the Dekati cascade impactor’s deposition patterns by applying as-prepared micro stencils to 30 mm acrylic substrates and evaporating a reference material (Ti) in arrangements of thin circular dots. The highly flexible direct patterning of acrylic discs with reference material, otherwise impossible with conventional photolithography, allows multiple reusing of the same micro stencils. The aspect ratios of the dots could be repeated with an error less than 4 %. A first set of standard reference samples for the 13 stages of the Dekati cascade impactor was produced and preliminary TXRF measurements of the deposited Ti masses were performed. The centricity of the deposition patterns turned out to be an important parameter for the quality of the TXRF results. The parylene mask technology for the production of reference samples turns out to be a promising new approach for the traceable calibration of TXRF spectrometers for the quantification of element concentrations in environmental aerosol samples but, due to its great versatility, it could be used for several other micropatterning applications on conventional and unconventional substrates. KW - AEROMET II KW - Aerosol KW - Parylene C KW - Reference samples KW - Flexible shadow masks KW - Cascade impactor KW - Air quality monitoring KW - Micropatterning KW - Mask fabrication KW - Elemental aerosol analysis KW - TXRF PY - 2022 DO - https://doi.org/10.1016/j.mne.2022.100108 SN - 2590-0072 VL - 14 SP - 1 EP - 19 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-54252 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Seeger, Stefan A1 - Osan, J. A1 - Czömpöly, O. A1 - Gross, A. A1 - Stoßnach, H. A1 - Stabile, L. A1 - Ochsenkuehn-Petropoulou, M. A1 - Tsakanika, L. A. A1 - Lymperopoulou, T. A1 - Goddart, S. A1 - Fiebig, M. A1 - Gaie-Levrel, F. A1 - Rissler, J. A1 - Kayser, Y. A1 - Beckhoff, B. T1 - Element mass concentrations in ambient aerosols, a comparison of results from filter sampling & ICP-MS ans cascade impactor sampling & mobile total reflection X-RAY fluorescence spectroscopy N2 - Quantitative chemical analysis of airborne particulate matter (PM) is vital for the understanding of health effects in indoor and outdoor environments and required by EU air quality regulations. Typically, airborne particles are sampled on filters, followed by lab-based analysis, e.g., with inductively coupled plasma mass spectrometry (ICP-MS). Within the EURAMET EMPIR AEROMET project, cascade impactor aerosol sampling was combined with on-site total reflection X-ray fluorescence (TXRF) spectroscopy. The study aimed at a proof of principles for this new mobile and on-size tool for the quantification of aerosol element compositions and element mass concentrations within short time intervals of less than 12 h. In a field campaign the method’s technical feasibility could be demonstrated. The TXRF results were traced back to a stationary, reference-free XRS setup in the laboratory of the German national metrology institute PTB at the BESSY II electron storage ring in Berlin, Germany. Simultaneous PM10-filter sampling, followed by standardized lab-based analysis, allowed for a comparison of the field campaign data of both methods. As Fig. 1 shows, the correspondence between PM10 filter sampling and ICP-MS, and on the other hand, cascade impactor sampling and TXRF is quite encouraging. However, for some of the analysed elements, e.g. V and Pb, the observed deviations are higher than expected and this highlights the fact, that spectral deconvolution strategies for TXRF on cascade impactor samples still need some improvement. This work was supported by the EMPIR programme, co-financed by the Participating States and from the European Union’s Horizon 2020 research and innovation programme, through grant agreements 16ENV07 AEROMET and 19ENV08 AEROMET II T2 - 12th International Conference on Instrumental Methods of Analysis (IMA-2021) CY - Athens, Greece DA - 20.09.2021 KW - Aerosol KW - TXRF KW - Reference method KW - Cascade impactor KW - Ambient aerosols KW - Air quality monitoring KW - Element mass concentration KW - Size resolved chemical composition KW - Time resolved chemical composition KW - ICP-MS PY - 2021 AN - OPUS4-53597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilke, Olaf A1 - Seeger, Stefan A1 - Brödner, Doris A1 - Erdmann, Kerstin A1 - Rasch, Fabian T1 - Chemical characterization of ultra-fine particles released from laser printers T2 - Indoor Air Conference 2022 N2 - 11 laser printers from 5 manufacturers were purchased in 2017 and tested for their UFP emissions. Size resolved sampling of the emitted particles was done with a 13 stage (30 nm to 10 µm) low pressure cascade impactor. The sampled particles were analysed for their chemical composition by thermal extraction (vaporization at 290°C) followed by GC-MS analysis. High boiling cyclic siloxanes (D10 to D16) were detected as constituents of UFP from laser printers. In comparison to measurements in 2008, aliphatic long-chain alkanes (C22 to C34) were detected additionally as chemical constituents of UFP from most of the tested printers and their amounts were higher than for cyclic siloxanes. Printers of one manufacturer showed very low UPF emissions compared to the other manufacturers. T2 - Indoor Air Conference 2022 CY - Kuopio, Finland DA - 12.06.2022 KW - UFP KW - Thermal extraction KW - Cascade impactor PY - 2022 SP - 1 EP - 4 AN - OPUS4-55106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilke, Olaf A1 - Seeger, Stefan A1 - Brödner, Doris A1 - Erdmann, Kerstin A1 - Rasch, Fabian T1 - Chemical characterization of ultra-fine particles released from laser printers N2 - 11 laser printers from 5 manufacturers were purchased in 2017 and tested for their UFP emissions. Size resolved sampling of the emitted particles was done with a 13 stage (30 nm to 10 µm) low pressure cascade impactor. The sampled particles were analysed for their chemical composition by thermal extraction (vaporization at 290°C) followed by GC-MS analysis. High boiling cyclic siloxanes (D10 to D16) were detected as constituents of UFP from laser printers. In comparison to measurements in 2008, aliphatic long-chain alkanes (C22 to C34) were detected additionally as chemical constituents of UFP from most of the tested printers and their amounts were higher than for cyclic siloxanes. Printers of one manufacturer showed very low UPF emissions compared to the other manufacturers. T2 - Indoor Air Conference 2022 CY - Kuopio, Finland DA - 12.06.2022 KW - UFP KW - Thermal extraction KW - Cascade impactor PY - 2022 AN - OPUS4-55107 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Seeger, Stefan A1 - Osan, J. A1 - Gross, A. A1 - Stabile, L. T1 - AEROMET - Observation of quickly changing element mass concentrations in an ambient aerosol using portable TXRF N2 - Measurements of aerosol particles are vital for enforcing EU air quality regulations to protect human health, and for research on climate change effects. Although metrics such as PM10 and PM2.5 are currently in use, the level of uncertainty of aerosol metrics is too high and the traceability is insufficient. The project AEROMET, which has been started in June 2017 aims at implementing improvements in a) the uncertainty of particle mass, size and number concentration measurements and b) in the characterization of regulated components in airborne particles. Both are demanded by existing networks within the EU as well as by global atmospheric research. On-site measurement campaigns One of the objects is the application of mobile x-ray spectroscopy techniques combined with aerosol sampling techniques for quantifying particle compositions in the field for real time analysis. During two in-field measurement campaigns in Budapest, Hungary in May 2018 and Cassino, Italy in September 2018 the size dependent mass concentrations of specific elements in ambient aerosols were monitored under dynamic conditions. Typically, airborne particles are sampled on filter substrates. During this project new sampling methods with specially designed substrate holders for an in-situ TXRF analysis were developed and applied for the first time. This approach allows a direct time and size resolved analysis without laborious digestion steps and a reduced risk of contamination. Aerosol particles were sampled in a 13-stage DLPI impactor - size range from 0,03 µm to 10 µm - which was equipped with special adapters for acrylic discs of 30 mm diameter, serving as substrates. TXRF analysis was performed on site with the transportable spectrometer S2 PICOFOX (Bruker Nano GmbH) equipped with a Mo X-ray tube and a 30 mm² Silicon Drift Detector (SDD). Excitation conditions were 50 kV, 600 µA, measurement time 1000 s. Quantification was based on internal standardization using 50 ng of Y in solution, which was pipetted into the centre of the discs prior to sampling. At moderate air pollution levels, i.e. PM10 ~ 20 µg/m³, sampling times of less than 2 hours were enough for the detection of elements in different particle size bins. The in-situ approach and the high sensitivity of TXRF enables the observation of rather quick changes in the quantity and distribution of elements in an ambient aerosol on the day of sampling, as the below example from the Cassino field campaign on 11 Sept. 2018 shows: The analysis of the morning and afternoon sampling shifts reveals the occurrence of the elements Fe, Ca and Si in different size bins as well as their significant temporal change in respective mass concentrations over the day while the distributions of several other elements in the aerosol remain unchanged. The validation of these results by backup measurements is planned. T2 - European Aerosol Conference EAC 2019 CY - Gothenburg, Sweden DA - 25.08.2019 KW - TXRF KW - Ambient air KW - Aerosol KW - Cascade impactor KW - Element analysis PY - 2019 AN - OPUS4-49582 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -