TY - CONF A1 - Bonse, Jörn A1 - Meissner, Sven A1 - Wasmuth, Karsten A1 - Schwibbert, Karin T1 - Impact of laser-induced periodic surface structures on the bactericidal properties of copper and brass N2 - Surfaces of metallic copper and copper alloys effectively inactivate microorganisms and viruses. However, the exact inactivation mode is still under debate. Main factors are assumed to include direct contact with the metallic surface, influx of Cu(I)/Cu(II) ions and the generation of reactive oxygen species (ROS). Laser-induced periodic surface structures (LIPSS) are frequently reported to act antibacterial, mainly by prevention of bacterial adhesion due to a limited number of possible adhesion points or by increasing the overall surface of intrinsically antibacterial materials. In time-kill experiments with E. coli and S. aureus we analyzed the impact of LIPSS on the toxicity of metallic copper and brass. We also conducted ROS accumulation assays and conclude that the application of LIPSS is not generally straight forward to obtain or improve antibacterial surfaces. Thus, the antibacterial effects of LIPPS. T2 - 2023 Spring Meeting CY - Strasbourg, France DA - 29.05.2023 KW - LIPSS KW - Antimicrobial KW - Reactive oxygen species PY - 2023 AN - OPUS4-58465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Razkin Bartolomé, Malen A1 - Gräf, S. A1 - Thiele, Dorothea A1 - Sahre, Mario A1 - Zabala, A. A1 - Buruaga, L. A1 - Krüger, Jörg A1 - Müller, F.A. A1 - Bonse, Jörn A1 - Schwibbert, Karin T1 - Bacterial adhesion on fs-laser processed laser-induced periodic surface structures N2 - Bacteria are ubiquitous and colonize all types of surfaces, including those in close proximity to humans, such as skin, food, and everyday objects. This raises the question of whether their presence represents a problem to be mitigated or a potential source of benefit to be harnessed, thereby stimulating scientific inquiry into the role of surface-associated bacteria in diverse domains ranging fromhuman health to industrial biotechnology. Aim: The objective of this project is to explore the impact of modifying surface topography on bacterial adhesion behavior. By manipulating the physical characteristics of the substrate, the attachment and detachment dynamics of bacteria can potentially be modified, leading to novel strategies for controlling bacterial colonization in various applications, such as medical devices. Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were tested on LIPSS-covered Fused Silica samples. T2 - 2023 Spring Meeting · , 2023 · Strasbourg CY - Strasbourg, France DA - 29.05.2023 KW - LIPSS KW - Biofilm KW - fs-laser processing PY - 2023 AN - OPUS4-58456 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -