TY - JOUR A1 - Trimpert, J. A1 - Groenke, N. A1 - Kunec, D. A1 - Eschke, K. A1 - He, Shulin A1 - McMahon, Dino Peter A1 - Osterrieder, N. T1 - A proofreading-impaired herpesvirus generates populations with quasispecies-like structure N2 - RNA virus populations are composed of highly diverse individuals that form a cloud of related sequences commonly referred to as a ‘quasispecies’1–3. This diversity arises as a consequence of low-fidelity genome replication4,5. By contrast, DNA Virus populations contain more uniform individuals with similar fitness6. Genome diversity is often correlated with increased Fitness in RNA viruses, while DNA viruses are thought to require more faithful genome replication. During DNA replication, erroneously incorporated bases are removed by a 3′-5′ exonuclease, a highly conserved enzymatic function of replicative DNA but not RNA polymerases. This proofreading process enhances replication fidelity and ensures the genome integrity of DNA organisms, including large DNA viruses7. Here, we show that a herpesvirus can tolerate impaired exonucleolytic proofreading, resulting in DNA virus populations, which, as in RNA viruses8, are composed of highly diverse genotypes of variable individual fitness. This indicates that herpesvirus mutant diversity may compensate for individual Fitness loss. Notably, in vivo infection with diverse virus populations results in a marked increase in virulence compared to genetically homogenous parental virus. While we cannot exclude that the increase in virulence is caused by selection of and/or interactions between individual genotypes, our findings are consistent with quasispecies dynamics. Our results contrast with traditional views of DNA virus replication and evolution, and indicate that a substantial increase in population diversity can lead to higher virulence. KW - Marek's virus KW - Virulence KW - Quasispecies KW - Evolution PY - 2019 DO - https://doi.org/10.1038/s41564-019-0547-x SN - 2058-5276 N1 - Corrigendum: Nature Microbiology 4 (2019) 2025 VL - 4 SP - 2175 EP - 2183 PB - Nature Publishing Group CY - London AN - OPUS4-48896 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - McMahon, Dino Peter A1 - Esparza, M. A1 - Davis, H. A1 - Margy, A. T1 - Infection stage and pathogen life cycle determine collective termite behaviour N2 - Social insects nesting in soil environments are in constant contact with entomopathogens and have evolved disease resistance mechanisms within a colony to prevent the occurrence and spread of infectious diseases. Among these mechanisms: mutual grooming reduces the cuticular load of pathogens, and burial of cadavers and cannibalism can prevent pathogens from replicating within the group. We explored how the rate and type of collective behavioural response is determined by stepwise infection dynamics operating at the level of the individual. Specifically, we infected the eastern subterranean termite Reticulitermes flavipes with different types of infectious particle and infection route of the entomopathogenic fungus Metarhizium anisopliae and recorded behavioural responses of nestmates to individuals at different times during the progression of infections. As expected, termites groomed conidia-exposed individuals significantly more than controls. Interestingly, grooming was significantly elevated after fungal germination than before, suggesting that pathogen growth cues act as strong stimulators of allogrooming. Conidia-exposed termites were cannibalized, but only after they became visibly ill. By contrast, termites did not groom blastospore-injected individuals more than controls at any time-point following infection. Instead, we found that blastospore-injected individuals were continually cannibalized at a low-level following injection with either viable or heat-killed blastospores, with a marked increase in cannibalism after termites injected with viable blastospores became visibly ill and were close to death. Together, these findings point to the importance of host condition as a cue for social hygienic behavior, and that the host itself appears to emit essential sickness cues that act as targets for its own sacrifice. This demonstrates that termites have independently evolved to both identify and destructively respond to sickness. T2 - VI Central European Meeting of the IUSSI 2019 CY - Wien, Austria DA - 19.03.2019 KW - Termite KW - Evolution KW - Social immunity PY - 2019 AN - OPUS4-49643 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - McMahon, Dino Peter T1 - The evolution of termite immunity N2 - The termites are a derived eusocial lineage of otherwise non-social cockroaches. Understanding the proximal and ultimate drivers of this major evolutionary transition represents an important goal in biology. One outstanding question concerns the evolution of termite immunity, which is thought to have undergone broad-sweeping adaptations in order to enhance group-level immune protection. To understand the evolutionary origins of termite immunity, we conducted qualitative and quantitative transcriptome analyses along a gradient of sociality. Firstly, we aimed to identify large-scale genetic shifts in immune traits linked to eusociality by comparing immune gene repertoires in solitary and subsocial cockroaches and across a range of eusocial termite lineages. Secondly, we compared the responses of a solitary cockroach, a subsocial wood-roach and different castes of a lower termite species to a non-specific immune challenge, in order to understand how sociality may have influenced the evolution of immune gene regulation. Firstly, we found that termites have a broadly representative repertoire of canonical immune genes as compared to gregarious cockroaches and subsocial wood-roaches. Secondly, with respect to immune challenge, the solitary cockroach and the subsocial wood-roach displayed a similarly comprehensive induced response, while the termite response was considerably dampened by comparison and strongly influenced by caste; with reproductives displaying a generally higher constitutive level of immune-gene expression compared to sterile castes. In summary we did not find termite eusociality to be associated with significant changes in immune gene diversity, but rather to be linked with significant modifications to the regulation of immunity following the origin of division of labour. T2 - Institute for Evolution and Biodiversity Lecture Series, Universität Münster CY - Münster, Germany DA - 20.02.2019 KW - Immunity KW - Evolution KW - Ecology KW - Termite KW - Molecular PY - 2019 AN - OPUS4-49644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - McMahon, Dino Peter T1 - G-BOP kick-off meeting proposal ideas Ecology and evolution of termite immunity N2 - Results suggest a reduction in immune gene repertoires in termites and possible complementary expression between termite castes. With comparative genomics we will investigate the evolution of gene families related to immunity, try to understand where reductions and expansions take place and relate these changes to shifts in sociality and ecology. The role of TEs in expansions and contractions of immune gene families will be investigated. For these analyses, we propose to generate high quality, highly contiguous genomes of species from different levels of sociality, covering all major termite families. With comparative transcriptomics we will investigate the expression of immune genes in different castes. Via network analyses we will identify pathways indicated in differential immunity between castes and between species of different sociality levels. We will investigate how these pathways have been rewired along the transitions to higher levels of sociality and how, intra-specifically, they change between castes. T2 - Rundgespräch zur Vorbereitung eines SPP G-BOP - Genomic Basis Of Phenotypic Innovations in Insect Evolution CY - Zoologisches Forschungsmuseum, Bonn, Germany DA - 16.05.2019 KW - Bioinformatics KW - Evolution KW - Termites PY - 2019 AN - OPUS4-49645 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - McMahon, Dino Peter T1 - The evolution of termite immunity N2 - A broad suite of immune adaptations have evolved in social insects which hold close parallels with the immune systems of multicellular individuals. However, comparatively little is known about the evolutionary origins of immunity in social insects. We tackle this by identifying immune genes from 18 cockroach and termite species, spanning a gradient of social lifestyles. Termites have undergone contractions of major immune gene families during the early origin of the group, particularly in antimicrobial effector and receptor proteins, followed by later re-expansions in some lineages. In a comparative gene expression analysis, we find that reproductive individuals of a termite invest more in innate immune regulation than other castes. When colonies encounter immune-challenged nestmates, gene expression responses are weak in reproductives but this pattern is reversed when colony members are immune-challenged individually, with reproductives eliciting a greater response to treatment than other castes. Finally, responses to immune challenge were more comprehensive in both subsocial and solitary cockroaches compared to termites, indicating a reduced overall ability to respond to infection in termites. Our study indicates that the emergence of termite sociality was associated with the evolution of a tapered yet caste-adapted immune system. T2 - 112th Annual Meeting of the German Zoological Society CY - Jena, Germany DA - 10.09.2019 KW - Social KW - E$volution KW - Termite KW - Immunity PY - 2019 AN - OPUS4-49646 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bucek, A. A1 - Sobotnik, J. A1 - He, Shulin A1 - Shi, M. A1 - McMahon, Dino Peter A1 - Holmes, E.C. A1 - Roisin, Y. A1 - Lo, N. A1 - Bourguignon, T. T1 - Evolution of Termite Symbiosis Informed by Transcriptome-Based Phylogenies N2 - Termitidae comprises 80% of all termite species that play dominant decomposer roles in Tropical cosystems. Two major events during Termite evolution were the loss of cellulolytic gut protozoans in the ancestor of Termitidae and the subsequent gain in the termitid subfamily Macrotermitinae of fungal symbionts cultivated externally in ‘‘combs’’ constructed within the nest. How these symbiotic transitions occurred remains unresolved. Phylogenetic analyses of mitochondrial data previously suggested that Macrotermitinae is the earliest branching termitid lineage, followed soon after by Sphaerotermitinae, which cultivates bacterial symbionts on combs inside its nests. This has led to the hypothesis that comb building was an important evolutionary step in the loss of gut protozoa in ancestral termitids. We sequenced genomes and transcriptomes of 55 termite species and reconstructed phylogenetic trees from up to 4,065 orthologous genes of 68 species. We found strong support for a novel sister-group relationship between the bacterial comb-building Sphaerotermitinae and fungus comb-building Macrotermitinae. This key finding indicates that comb building is a derived trait within Termitidae and that the creation of a comb-like ‘‘external rumen’’ involving bacteria or fungi may not have driven the loss of protozoa from ancestral termitids, as previously hypothesized. Instead, associations with gut prokaryotic symbionts, combined with dietary shifts from wood to other plant-based substrates, may have played a more important role in this symbiotic transition. Our phylogenetic tree provides a platform for future studies of comparative termite evolution and the evolution of symbiosis in this taxon. KW - Molecular clock KW - Fungiculture KW - Gut symbionts KW - Insect evolution KW - Isoptera PY - 2019 DO - https://doi.org/10.1016/j.cub.2019.08.076 VL - 29 IS - 21 SP - 3728 EP - 3734.e4 PB - Elsevier Ltd. AN - OPUS4-49647 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, U. A1 - McMahon, Dino Peter A1 - Rolff, J. T1 - Exposure of the wild bee Osmia bicornis to the honey bee pathogen Nosema ceranae N2 - Wild bees are important pollinators for agricultural crops and solitary species such as Osmia bicornis are particularly suitable for pollination management. Wild bees share floral resources with managed honey bees and may be exposed to emerging infectious diseases. Although studies have explored the prevalence of pathogens in solitary wild bee species, data regarding the impact of pathogens on solitary bee health are lacking. We carried out experiments examining whether the solitary bee species O. bicornis is susceptible to infection with the emerging pathogen The results obtained indicate that N. ceranae may be able to infect O. bicornis but its impact on host fitness is negligible: survival rates did not differ between Control and inoculated bees, although male survival was marginally lower after infection. To explore the possible field-relevance of our findings, we collected wild bees near an infected and a non-infected hive and showed that N. ceranae was shared between managed and wild bees, although only the in presence of infected honey bees. The findings of the present study show that O. bicornis is susceptible to pathogen spillover and could act as a potential reservoir host for N. ceranae in pollinator networks. Additional studies on this species incorporating sublethal effects, multiple infections and other interacting stressors are warranted. KW - Wild bees KW - Nosema ceranae KW - Osmia bicornis KW - Pathogen spillover KW - Survival rates PY - 2019 DO - https://doi.org/10.1111/afe.12338 SN - 1461-9555 SN - 1461-9563 VL - 21 IS - 4 SP - 363 EP - 371 PB - Wiley AN - OPUS4-49648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bramke, K. A1 - Müller, U. A1 - McMahon, Dino Peter A1 - Rolff, J. T1 - Exposure of Larvae of the Solitary Bee Osmia bicornis to the Honey Bee Pathogen Nosema ceranae Aects Life History N2 - Wild bees are important pollinators of wild plants and agricultural crops and they are threatened by several environmental stressors including emerging pathogens. Honey bees have been suggested as a potential source of pathogen spillover. One prevalent pathogen that has recently emerged as a honey bee disease is the microsporidian Nosema ceranae. While the impacts of N. ceranae in honey bees are well documented, virtually nothing is known about its effects in solitary wild bees. The solitary mason bee Osmia bicornis is a common pollinator in orchards and amenable to Commercial management. Here, we experimentally exposed larvae of O. bicornis to food contaminated with N. ceranae and document spore presence during larval development. We measured mortality, growth parameters, and timing of pupation in a semi-field experiment. Hatched individuals were assessed for physiological state including fat body mass, wing muscle mass, and body size. We recorded higher mortality in the viable-spore-exposed group but could only detect a low number of Spores among the individuals of this treatment. Viable-spore-treated individuals with higher head capsule width had a delayed pupation start. No impact on the physiological status could be detected in hatched imagines. Although we did not find overt evidence of O. bicornis infection, our findings indicate that exposure of larvae to viable N. ceranae spores could affect bee development. KW - Bee diseases KW - Wild bees KW - Nosema ceranae KW - Osmia bicornis KW - Pathogen transmission KW - Solitary bees KW - Bee health PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-496497 DO - https://doi.org/10.3390/insects10110380 VL - 10 IS - 11 SP - 380 PB - MDPI AN - OPUS4-49649 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -