TY - CONF A1 - Nordholt, Niclas T1 - Persistence against benzalkonium chloride promotes rapid evolution of tolerance under periodic disinfection N2 - A presentation given at the VAAM conference 2022, summarizing our findings published in the research paper "Persistence against benzalkonium chloride promotes rapid evolution of tolerance under periodic disinfection" T2 - Annual conference of the association for general and applied microbiology (VAAM) 2022 CY - Düsseldorf, Germany DA - 21.02.2022 KW - Persistence KW - Biocides KW - Evolution KW - Cross-resistance KW - Biocide tolerance KW - Disinfection PY - 2022 AN - OPUS4-54437 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas T1 - Consequences of BAC tolerance for selection and evolution in the presence of antibiotics N2 - The exposure to antimicrobial substances drives the evolution of antimicrobial resistance. Biocides are antimicrobials used as disinfectants, antiseptics and preservatives. They find application on a large scale in the industrial and medical sector, but also in private households. In terms of mass, the worldwide use of biocides exceeds that of antibiotics. Thus, despite their important role in preventing the spread of pathogens, due to their ubiquity, biocides are suspected to be drivers of the antimicrobial resistance crisis. In our work at BAM we try to understand how biocides contribute to the emergence of AMR, what the underlying adaptation principles and mechanisms are and how they compare to those found for antibiotics. Within our group, I mainly focus on the following two questions: How does phenotypic heterogeneity in bacteria affect the ability to survive treatment with biocides? And what are the consequences of phenotypic heterogeneity for the evolution of resistance to biocides and antibiotics? I will share published and unpublished results which demonstrate that phenotypic heterogeneity can enable the survival of biocide treatment and, through this, facilitate the evolution of AMR. On the other hand, we find that adaptation to a biocide can unexpectedly impair the ability to evolve resistance against an antibiotic. T2 - FEMS summer school for postdocs 2022: Microbial Evolvability Mechanisms: Resistance, Biology, and Strategies to Defeat and Detect CY - Split, Croatia DA - 27.04.2022 KW - Disinfection KW - Biocides KW - Evolution KW - Resistance KW - Biocide tolerance PY - 2022 AN - OPUS4-54846 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas T1 - ALEE-AMC: Bacterial resistance evolution towards antimicrobial surfaces and development of a standardized test N2 - Background: Antimicrobial surfaces and coatings (AMCs) are important to protect man-made structures from biodeterioration and biodegradation. Advances in nano-structuring methods hold the promise of a new generation of AMCs. However, the evolution and selection of bacterial resistance to AMCs may threaten their efficacy in the long term. Therefore, according to the EU Biocidal Products Regulation, the risk of resistance development upon exposure to AMCs must be evaluated during product authorization. The same applies to the development of cross-resistances to other substances, for instance biocides and antibiotics. However, no standardized method exists to assess the risk of resistance and cross-resistance development upon exposure to AMCs during the authorization process. Objectives: • To develop a standardizable adaptive laboratory evolution experiment to be performed on AMCs (ALEE-AMC) • To assess performance and robustness of ALEE-AMC in a round robin test, using a copper AMC as reference • To uncover the mechanisms underlying evolution of resistance to copper AMC Materials & Methods: ALEE-AMC was developed based on an approved standard to determine the efficacy of antimicrobial surfaces (ISO 22196). ALEE-MC was performed on an antimicrobial copper surface as reference material and Escherichia coli as model organism. A round robin test was conducted with six participants to evaluate the reproducibility and applicability of ALEE-AMC. Evolved E. coli populations from the round robin partners were collected and subjected to phenotypic (antimicrobial susceptibility testing, ISO 22196) and genotypic (whole genome sequencing) characterization at BAM. Results: The results of the ALEE-AMC round robin test indicate that repeated exposure to copper can select for reduced copper susceptibility. However, failure of individual E. coli lineages to adapt to the copper surfaces was also observed. Evolved E. coli exhibited increased survival upon exposure to copper surfaces. Adaptation to copper did not induce cross-resistance to antibiotics. Whole genome sequencing of the evolved E. coli revealed high diversity of mutations among individual evolved strains, indicating the existence of multiple, underexplored evolutionary pathways towards increased survival of antimicrobial copper surfaces. Conclusion & Significance: ALEE-AMC offers a standardizable platform to assess the risk of resistance development towards novel and existing AMCs. Specifically, using ALEE-AMC in a round robin test, insights into evolvable survival mechanisms to copper AMCs have been gained. These mechanistic insights may be exploited to prevent the evolution against copper AMCs. In future steps, criteria need to be defined to provide guidelines for the authorization of AMCs based on the outcomes of ALEE-AMC T2 - International Biodeterioration and Biodegradation Symposium, Berlin, Germany CY - Berlin, Germany DA - 09.09.2024 KW - Biocides KW - Antimicrobial surfaces KW - Resistance KW - Evolution KW - Standardized test PY - 2024 AN - OPUS4-61176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas T1 - Bacterial resistance evolution on antimicrobial surfaces: Mechanistic insights from a standardizable method N2 - Introduction: Antimicrobial surfaces and coatings (AMCs) are important to prevent the spread of pathogens, especially in hygiene-sensitive areas. However, the evolution and selection of bacterial resistance to AMCs may threaten their efficacy in the long term. In addition, resistance evolution to AMCs may pose the risk for the development of cross-resistance to antibiotics. The assessment of unacceptable resistance risks during the authorization of AMCs is hampered by the lack of standardized test methods that quantify the adaptability of exposed bacteria to AMCs. Objectives: • To develop a standardizable method to determine resistance evolution of bacteria on AMCs (ALEE-AMC) • To assess performance and robustness of ALEE-AMC in a ring trial • To uncover the mechanisms underlying evolution of resistance to a metallic copper AMC • To use ALEE-AMC to assess the evolution of resistance on a novel, nano-particle-based AMC Methods: ALEE-AMC was developed based on an international standard to determine the efficacy of antimicrobial surfaces (ISO 22196). In the ALEE-AMC test, adaptive laboratory evolution is conducted by repeated cycles of AMC exposure and re-growth of surviving cells, selecting for increased survival, followed by isolation of evolved clones. Metallic copper was used as a reference AMC and Escherichia coli as a model microorganism in the ring trial. Evolved E. coli populations from the ring trial partners were subjected to phenotypic (antimicrobial susceptibility testing, ISO 22196) and genotypic (whole genome sequencing) characterization. ALEE-AMC will be used to assess the evolution of resistance on a novel, nano-particle-based AMC currently under development. Findings: The results of the ALEE-AMC ring trial show that repeated exposure to a metallic copper AMC can reproducibly select for reduced copper susceptibility in individual evolutionary lineages across ring trial participants. However, failure to adapt in individual lineages was also observed in all trials. Isolated evolved E. coli clones exhibited increased survival upon exposure to copper surfaces. Adaptation to copper did not induce cross-resistance to antibiotics because the antibiotic susceptibility of copper-adapted clones did not increase above the clinical breakpoint. Whole genome sequencing of the evolved E. coli revealed a high diversity of mutations, including mutations in genes involved in survival to antibiotics. These results indicate the existence of multiple, underexplored evolutionary pathways towards increased survival of antimicrobial copper surfaces. Conclusion: ALEE-AMC offers a standardizable platform to assess the risk of resistance development towards novel and existing AMCs, including nano-particle-based and metallic copper AMCs. Specifically, using ALEE-AMC provided insights into evolvable survival mechanisms to copper AMCs and its consequences for antimicrobial resistance. T2 - FEMS MICRO 2025 CY - Mailand, Italy DA - 14.07.2025 KW - Biocides KW - Antimicrobial surfaces KW - Biocide resistance KW - Standardization KW - ISO 22196 KW - Evolution PY - 2025 AN - OPUS4-63837 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -