TY - CONF A1 - Schwibbert, Karin A1 - Menzel, Friederike T1 - Bacterial Adhesion on Different Materials N2 - Biofilm formation on materials leads to high costs in industrial processes, as well as in medical applications. This fact has stimulated interest in the development of new materials with improved surfaces to reduce bacterial adhesion. We present a flow chamber system to test and quantify bacterial adhesion on materials that are part of antifouling concepts. The adhesion process is standardized and can be adapted to different bacteria in subaquatic of subaerial environments. It is combined with a standardized evaluation procedure based on statistical evidence. T2 - AMiCI Workshop Berlin CY - BAM Berlin, Germany DA - 07.06.2018 KW - Bacterial adhesion KW - Flow chamber system KW - Biofilm formation KW - Standardized test and quantification procedure PY - 2018 AN - OPUS4-46374 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schwibbert, Karin A1 - Menzel, F. A1 - Epperlein, N. A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - Bacterial adhesion on femtosecond laser-modified polyethylene N2 - In this study, femtosecond laser-induced sub-micrometer structures are generated to modify polyethylene (PE) surface topographies. These surfaces were subjected to bacterial colonization studies with Escherichia coli and Staphylococcus aureus as test strains. The results reveal that the nanostructures do not influence S. aureus coverage, while the adhesion of E. coli is reduced. KW - Bacterial adhesion KW - Laser-modified surface KW - Polyethylene KW - Laser-induced nanostructures KW - Biofilm PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-492280 DO - https://doi.org/10.3390/ma12193107 VL - 12 IS - 19 SP - 3107 PB - MDPI CY - Basel, Schweiz AN - OPUS4-49228 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schwabe, M. A1 - Griep, S. A1 - Schmidtberg, H. A1 - Plarre, Rüdiger A1 - Goesmann, A. A1 - Vilcinskas, A. A1 - Vogel, H. A1 - Brinkrolf, K. T1 - Next-Generation Sequencing Analysis of the Tineola bisselliella Larval Gut Transcriptome Reveals Candidate Enzymes for Keratin Digestion N2 - The clothes moth Tineola bisselliella is one of a few insects that can digest keratin, leading to the destruction of clothing, textiles and artwork. The mechanism of keratin digestion is not yet fully understood, partly reflecting the lack of publicly available genomic and transcriptomic data. Here we present a high-quality gut transcriptome of T. bisselliella generated from larvae reared on keratin-rich and keratin-free diets. The overall transcriptome consists of 428,221 contigs that were functionally annotated and screened for candidate enzymes involved in keratin utilization. As a mechanism for keratin digestion, we identified cysteine synthases, cystathionine β-synthases and cystathionine γ-lyases. These enzymes release hydrogen sulfite, which may reduce the disulfide bonds in keratin. The dataset also included 27 differentially expressed contigs with trypsin domains, among which 20 were associated with keratin feeding. Finally, we identified seven collagenases that were upregulated on the keratin-rich diet. In addition to this enzymatic repertoire potentially involved in breaking down keratin, our analysis of poly(A)-enriched and poly(A)-depleted transcripts suggested that T. bisselliella larvae possess an unstable intestinal microbiome that may nevertheless contribute to keratin digestion KW - Insect biotechnology KW - Gene expression KW - RNA-Sequencing KW - Transcriptomics KW - Tineola bisselliella KW - Keratin PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529902 DO - https://doi.org/10.3390/genes12081113 VL - 12 IS - 8 SP - 1113 PB - MDPI AN - OPUS4-52990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schulze-Makuch, D. A1 - Lipus, D. A1 - Arens, F. L. A1 - Baque, M. A1 - Bornemann, T. L. V. A1 - de Vera, J. P. A1 - Flury, M. A1 - Froesler, J. A1 - Heinz, J. A1 - Hwang, Y. A1 - Kounaves, S. P. A1 - Mangelsdorf, K. A1 - Meckenstock, R. U. A1 - Pannekens, M. A1 - Probst, A. J. A1 - Saenz, J. S. A1 - Schirmack, J. A1 - Schloter, M. A1 - Schmitt-Kopplin, P. A1 - Schneider, Beate A1 - Uhl, J. A1 - Vestergaard, G. A1 - Valenzuela, B. A1 - Zamorano, P. A1 - Wagner, D. T1 - Microbial hotspots in lithic microhabitats inferred from DNA fractionation and metagenomics in the Atacama Desert N2 - The existence of microbial activity hotspots in temperate regions of Earth is driven by soil heterogeneities, especially the temporal and spatial availability of nutrients. Here we investigate whether microbial activity hotspots also exist in lithic microhabitats in one of the most arid regions of the world, the Atacama Desert in Chile. While previous studies evaluated the total DNA fraction to elucidate the microbial communities, we here for the first time use a DNA separation approach on lithic microhabitats, together with metagenomics and other analysis methods (i.e., ATP, PLFA, and metabolite analysis) to specifically gain insights on the living and potentially active microbial community. Our results show that hypolith colonized rocks are microbial hotspots in the desert environment. In contrast, our data do not support such a conclusion for gypsum crust and salt rock environments, because only limited microbial activity could be observed. The hypolith community is dominated by phototrophs, mostly Cyanobacteria and Chloroflexi, at both study sites. The gypsum crusts are dominated by methylotrophs and heterotrophic phototrophs, mostly Chloroflexi, and the salt rocks (halite nodules) by phototrophic and halotolerant endoliths, mostly Cyanobacteria and Archaea. The major environmental constraints in the organic-poor arid and hyperarid Atacama Desert are water availability and UV irradiation, allowing phototrophs and other extremophiles to play a key role in desert ecology. KW - Desert ecology KW - Extremophile KW - Hyperarid PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527959 DO - https://doi.org/10.3390/microorganisms9051038 SN - 2076-2607 VL - 9 IS - 5 SP - 1038 PB - MDPI CY - Basel AN - OPUS4-52795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schulze-Makuch, D. A1 - Haque, S. A1 - Beckles, D. A1 - Schmitt-Kopplin, P. A1 - Harir, M. A1 - Schneider, Beate A1 - Stumpp, C. A1 - Wagner, D. T1 - A chemical and microbial characterization of selected mud volcanoes in Trinidad reveals pathogens introduced by surface water and rain water N2 - Terrestrial mud volcanoes are unique structures driven by tectonic pressure and fluids from the deep subsurface. These structures are mainly found in active tectonic zones, such as the area near the Los Bajos Fault in Trinidad. Here we report a chemical and microbiological characterization of three mud volcanoes, which included analyses of multiple liquid and solid samples from the mud volcanoes. Our study confirms previous suggestions that at least some of the mud volcano fluids are a mixture of deeper salt-rich water and surficial/precipitation water. No apparent water quality differences were found between sampling sites north and south of a major geological fault line. Microbiological analyses revealed diverse communities, both aerobic and anaerobic, including sulfate reducers, methanogens, carbon dioxide fixing and denitrifying bacteria. Several identified species were halophilic and likely derived from the deeper salt-rich subsurface water, while we also cultivated pathogenic species from the Vibrionaceae, Enterobacteriaceae, Shewanellaceae, and Clostridiaceae. These microorganisms were likely introduced into the mud volcano fluids both from surface water or shallow ground-water, and perhaps to a more minor degree by rain water. The identified pathogens are a major health concern that needs to be addressed. KW - Water stable isotope analysis KW - Mud volcanoe fluids KW - Metabolomics PY - 2020 DO - https://doi.org/10.1016/j.scitotenv.2019.136087 VL - 707 SP - 136087 PB - Elsevier B.V. AN - OPUS4-50499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schulz, Anne-Christine T1 - Assessing co-selection of biocide and antibiotic resistance in wastewater microbial communities N2 - Biocides are used for a wide range of purposes, including disinfectants or preservatives. Biocides play a major role in the prevention of microbial infections in healthcare and animal husbandry. The use of biocides often leads to the discharge of active biocidal substances into wastewater streams, causing the exposure of wastewater microbial communities to subinhibitory concentrations. In turn, it is known that wastewater treatment plants (WWTP) are hotspots for antibiotic resistant bacteria. Since similar mechanisms confer resistance to biocides and antibiotics, exposure to biocides can result in co-selection of antibiotic resistant bacteria in WWTP due to biocides. Here, we investigate the magnitude and the drivers of co-selection of antibiotic resistance in natural wastewater microbial communities upon biocide exposure. Microbial communities will be sampled at the WWTP Ruhleben in Berlin and characterized regarding their biocide and antibiotic resistance. Changes in the resistance level after exposure to different biocides will be determined by enumerating resistant and non-resistant E. coli and heterotrophic bacteria on selective plates with and without several biocides and antibiotics. Moreover, we are establishing a synthetic community comprising about 100 environmental E. coli isolates each with different antimicrobial resistance traits. Each isolate will be tagged with a unique DNA-barcode. All isolates will be pooled and exposed to different biocides at various concentrations. The barcode labeling enables us to determine the abundance of each isolate at the beginning and end of the experiment by transposon-tag sequencing. The project results will inform risk assessment of the effects of biocidal residues on antimicrobial resistance selection in WWTP. The project is part of the BIOCIDE consortium funded within the call on Aquatic pollutants by JPI-AMR, JPI-OCEANS and JPI-WATER. T2 - 6th International Symposium onn the Environmental Dimension of Antibiotic Resistance - EDAR 6 CY - Gothenburg, Sweden DA - 22.09.2022 KW - Antibiotic resisitance KW - Biocide KW - Wastewater KW - Risk assesment PY - 2022 AN - OPUS4-56796 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schulz, Anne-Christine T1 - Co-selection for biocide and antibiotic resistance in microbial wastewater communities N2 - Biocides are used for a wide range of purposes, including disinfectants or preservatives. They play a major role in the prevention of microbial infections in healthcare and animal husbandry. The use of biocides often leads to the discharge of active biocidal substances into wastewater streams, causing the exposure of wastewater microbial communities to subinhibitory concentrations. In turn, it is known that wastewater treatment plants (WWTP) are hotspots for antibiotic resistant bacteria. Since similar mechanisms confer resistance to biocides and antibiotics, exposure to biocides can result in co-selection of antibiotic resistant bacteria in WWTP Here, we want to investigate co-selection processes of antibiotic resistance in natural WWTP microbial communities upon biocide exposure. Microbial communities were sampled at the WWTP Ruhleben in Berlin and characterized regarding their susceptibility against different clinically relevant antibiotics. To investigate the link between biocide exposure and antibiotic resistance, changes in the susceptibility level after exposure to environmentally relevant concentrations of the commonly used biocide didecyldimethylammonium chloride (DDAC) will be determined by enumerating resistant and non-resistant E. coli on selective plates with and without antibiotics and DDAC. In case of antibiotics, clinical breakpoint concentrations according to EUCAST will be used to discriminate between susceptible and resistant strains. In case of DDAC (and biocides in general), clinical breakpoints do not exist. Therefore, we determined a cut-off concentration at which the majority of naturally-occurring E. coli strains cannot grow anymore based on (I) the MIC (minimal inhibitory concentration) distribution, and (II) by plating wastewater communities onto selective indicator agar plates loaded with increasing DDAC concentration. Additionally, antibiotic cross-resistance will be determined by spotting single colonies, isolated from DDAC-selective plates onto antibiotic plates. The results of our experiments will help to determine selective concentrations and to estimate the risk of antibiotic co-selection and cross-resistance in microbial WWTP communities upon biocide exposure. T2 - Annual Conference 2023 of the Association for General and Applied Microbiology CY - Göttingen, Germany DA - 10.09.2023 KW - Antibiotic resisitance KW - Biocide KW - Wastewater KW - Risk assesment PY - 2023 AN - OPUS4-58510 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schreiber, Frank A1 - Zimmermann, M. A1 - Escrig, S. A1 - Lavik, G. A1 - Kuypers, M.M.M. A1 - Meibom, A. A1 - Ackermann, M. T1 - Substrate and electron donor limitation induce phenotypic heterogeneity in different metabolic activities in a green sulphur bacterium N2 - Populations of genetically identical cells can display marked variation in phenotypic traits; such variation is termed phenotypic heterogeneity. Here, we investigate the effect of substrate and electron donor limitation on phenotypic heterogeneity in N2 and CO2 fixation in the green sulphur bacterium Chlorobium phaeobacteroides. We grew populations in chemostats and batch cultures and used stable isotope labelling combined with nanometer‐scale secondary ion mass spectrometry (NanoSIMS) to quantify phenotypic heterogeneity. Experiments in H2S (i.e. electron donor) limited chemostats show that varying levels of NH4+ limitation induce heterogeneity in N2 fixation. Comparison of phenotypic heterogeneity between chemostats and batch (unlimited for H2S) populations indicates that electron donor limitation drives heterogeneity in N2 and CO2 fixation. Our results demonstrate that phenotypic heterogeneity in a certain metabolic activity can be driven by different modes of limitation and that heterogeneity can emerge in different metabolic processes upon the same mode of limitation. In conclusion, our data suggest that limitation is a general driver of phenotypic heterogeneity in microbial populations. KW - NanoSIMS KW - Phenotypic heterogeneity PY - 2018 UR - https://onlinelibrary.wiley.com/doi/abs/10.1111/1758-2229.12616 DO - https://doi.org/10.1111/1758-2229.12616 SN - 1758-2229 VL - 10 IS - 2 SP - 179 EP - 183 PB - John Wiley & Sons Ltd AN - OPUS4-44596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank A1 - Nordholt, Niclas T1 - Persistence against benzalkonium chloride promotes rapid evolution of tolerance under periodic disinfection N2 - Biocides used as disinfectants are important to prevent the transmission of pathogens, especially during the current antibiotic resistance crisis. This crisis is exacerbated by phenotypically tolerant persister subpopulations which can survive transient antibiotic treatment and facilitate resistance evolution. Despite the transient nature of disinfection, knowledge concerning persistence to disinfectants and its link to resistance evolution is currently lacking. Here, we show that E. coli displays persistence against a widely used disinfectant benzalkonium chloride (BAC). Periodic, persister-mediated failure of disinfection rapidly selects for BAC tolerance. BAC tolerance is associated with reduced cell surface charge and mutations in the novel tolerance locus lpxM. Moreover, the fitness cost incurred by BAC tolerance turned into a fitness benefit in the presence of antibiotics, suggesting a selective advantage of BAC-tolerant mutants in antibiotic environments. Our findings provide a mechanistic underpinning for the faithful application of disinfectants to prevent multi-drug-resistance evolution and to steward the efficacy of biocides and antibiotics. T2 - New Approaches and Concepts in Microbiology CY - Online meeting DA - 07.07.2021 KW - Persistence KW - Biocides KW - Evolution KW - Cross-resistance KW - Biocide tolerance PY - 2021 AN - OPUS4-53168 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schreiber, Frank A1 - Ackermann, M. T1 - Environmental drivers of metabolic heterogeneity in clonal microbial populations N2 - Microorganisms perform multiple metabolic functions that shape the global cycling of elements, health and disease of their host organisms, and biotechnological processes. The rates, at which different metabolic activities are performed by individual cells, can vary between genetically identical cells within clonal populations. While the molecular mechanisms that result in such metabolic heterogeneity have attracted considerable interest, the environmental conditions that shape heterogeneity and its consequences have received attention only in recent years. Here, we review the environmental drivers that lead to metabolic heterogeneity with a focus on nutrient limitation, temporal fluctuations and spatial structure, and the functional consequences of such heterogeneity. We highlight studies using single-cell methods that allow direct investigation of metabolic heterogeneity and discuss the relevance of metabolic heterogeneity in complex microbial communities. KW - Phenotypic variation KW - NanoSIMS KW - Diversity KW - Metabolism PY - 2019 UR - https://www.sciencedirect.com/science/article/abs/pii/S095816691930134X?via%3Dihub DO - https://doi.org/10.1016/j.copbio.2019.11.018 VL - 62 SP - 202 EP - 211 PB - Elsevier Ltd. AN - OPUS4-50194 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Phenotypic diversity in microbial metabolism and antimicrobial resistance N2 - Most microorganisms live in environments where nutrients are limited and fluctuate over time. Cells respond to nutrient fluctuations by sensing and adapting their physiological state. Recent studies suggest phenotypic heterogeneity in isogenic populations as an alternative strategy in fluctuating environments, where a subpopulation of cells express a function that allows growth under conditions that might arise in the future. It is unknown how environmental factors such as nutrient limitation shape phenotypic heterogeneity in metabolism and whether this allows cells to respond to nutrient fluctuations. Here, we show that substrate limitation increases phenotypic heterogeneity in metabolism, and this heterogeneity allows cells to cope with substrate fluctuations. We subjected the N2-fixing bacterium Klebsiella oxytoca to different levels of substrate limitation and substrate shifts, and obtained time-resolved single-cell measurements of metabolic activities using nanometre-scale secondary ion mass spectrometry (NanoSIMS). We found that the level of NH4+ limitation shapes phenotypic heterogeneity in N2 fixation. In turn, the N2 fixation rate of single cells during NH4+ limitation correlates positively with their growth rate after a shift to NH4+ depletion, experimentally demonstrating the benefit of heterogeneity. The results indicate that phenotypic heterogeneity is a general solution to two important ecological challenges - nutrient limitation and fluctuations - that many microorganisms face. Currently, we use NanoSIMS to develop a new approach that defines functionally-relevant, phenotypic biodiversity in microbial systems. In the last part of my presentation, I will highlight why the concept of phenotypic diversity is relevant for the understanding of antimicrobial resistance. T2 - Berlin Seminar for Resistance Research at FU Berlin Veterinary Medicine CY - Berlin, Germany DA - 01.03.2018 KW - Antimicrobial Resistance KW - Metabolism KW - Phenotypic diversity PY - 2018 AN - OPUS4-44597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Phenotypic diversity in microbial metabolism and antimicrobial resistance N2 - Phenotypic dicersty can emerge in microbial metabolic activties and in persistence against antimicrobials. In this talk, I present two examples of phenotypic heterogeneity and discuss how they might be related. T2 - Workshop on Bacterial adaptation to antimicrobials: environmental, evolutionary and mechanistic aspects CY - FU Berlin, Germany DA - 17.04.2018 KW - Antimicrobial resistance KW - Metabolism KW - Phenotypic diversity PY - 2018 AN - OPUS4-46271 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Resistance selection on antimicrobial surfaces N2 - Antimicrobial surfaces are widely used to reduce the number of bacteria residing in the indoor environment. In this talk, I discuss the risk how these surfaces can lead to the selection of antimicrobial resistant bacteria. T2 - Cost action workshop Amici - Antimicrobial Coatings Applied in Healthcare Settings – Efficacy Testing CY - BAM Unter den Eichen, Berlin, Germany DA - 07.06.2018 KW - Antimicrobial resistance KW - Antimicrobial surfaces KW - Cross-resistance PY - 2018 AN - OPUS4-46272 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Single-cell trait-based biodiversity in microbial communities N2 - A fundamental question in ecology is how biodiversity affects ecosystem function. Biodiversity is commonly estimated based on genetic variation. We investigated a new approach that defines and measures biodiversity in complex microbial communities. We used the variation in multiple functionally-relevant, phenotypic traits measured in parallel in single cells as a metric for microbial phenotypic diversity. We studied phenotypic diversity and ecosystem functioning throughout different photosynthetic layers dominated by divergent microbial communities in the gradient of Lago di Cadagno. We determined genetic diversity by 16S and 18S amplicon sequencing and bulk ecosystem functioning (photosynthesis). In addition, we determined phenotypic diversity using single-cell technologies such as nanometer-scale secondary ion mass spectrometry (NanoSIMS) correlated with confocal laser scanning microscopy (CLSM) and scanning flow-cytometry. We measured functional trait variation between individuals in 13CO2 fixation, 15NH4+ uptake, and variation in physio-morphological cell traits, such as cell size, shape, and auto-fluorescence for various pigments related to photosynthesis. We used the distances between individuals in a multidimensional trait space to derive phenotypic trait-based diversity indices, such as trait richness, trait evenness, and trait divergence. We find that phenotypic trait divergence associates with ecosystem functioning, whereas genetic diversity does not. Including activity-based, single-cell phenotypic measurements with NanoSIMS provided an additional accuracy to the trait-based diversity assessment and allowed us to formulate hypotheses on the mechanisms that shape the correlation between phenotypic diversity and eco-system function. Together, our results show that phenotypic diversity is a meaningful concept to measure microbial biodiversity and associate it with ecosystem functioning. T2 - 17th International Symposium on Microbial Ecology (ISME 17) CY - Leipzig, Germany DA - 12.08.2018 KW - Trait-based ecology KW - Phenotypic diversity KW - Lake Cadagno PY - 2018 AN - OPUS4-46273 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Persistence as a microbial survival strategy against biocides and its link to antibiotic resistance evolution N2 - Question: One cornerstone to prevent the spread of bacteria in clinical and industrial settings is the application of biocides including disinfectants and preservatives. However, bacteria can evolve resistance to biocides, which in turn can confer cross-resistance to antibiotics. Additionally, clonal bacterial populations can display phenotypic heterogeneity with respect to the tolerance of antibiotic stress leading to a prolonged survival of a sub-population; this phenomenon is termed persistence. Persistence to antibiotics is an evolvable trait and can serve as a stepping stone for the evolution of genetically encoded resistance. Until now, there is a lack of systematic studies that investigate if bacterial populations establish persister subpopulations that tolerate disinfectant stress longer than most of the population. Our objective is to investigate if persistence is a bacterial survival strategy against biocides. Furthermore, we investigate the mechanisms of biocide persistence and if persistence can evolve in the face of fluctuating exposure to biocides. Lastly, we test if the evolved mechanisms of biocide tolerance lead to biocide resistance and if they confer cross-tolerance and cross-resistance against antibiotics. Methods: We use time-kill assays in the presence of biocides and experimental evolution combined to whole-genome sequencing in the model organism E. coli. Results: We find persister sub-populations against chlorhexidine and quaternary ammonium compounds, but not to alcohols, aldehydes and oxidative compounds. We will present the relationship of mechanisms known to underlie antibiotic persister formation to the formation of persisters against biocides. In addition, we will present data from an ongoing evolution experiment for persistence against biocides. Conclusion There is a link between antibiotic and biocide persistence with possible implications for antibiotic resistance evolution and spread. T2 - 5th International Symposium on the Environmental Dimension of Antibiotic Resistance - EDAR 2019 CY - Hong Kong, China DA - 09.06.2019 KW - Antimicrobial resistance KW - Biocides KW - Persister cells PY - 2019 AN - OPUS4-49083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Single-cell trait-based biodiversity in microbial communities and its link to ecosystem functioning in a stratified lake N2 - A fundamental question in ecology is how biodiversity affects ecosystem function. Biodiversity is commonly estimated based on genetic variation. We investigated a new approach that defines and measures biodiversity in complex microbial communities. We used the variation in multiple functionally-relevant, phenotypic traits measured in parallel in single cells as a metric for microbial phenotypic diversity. We studied phenotypic diversity and ecosystem functioning throughout different photosynthetic layers dominated by divergent microbial communities in the gradient of Lago di Cadagno. We determined genetic diversity by 16S and 18S amplicon sequencing and bulk ecosystem functioning (photosynthesis). In addition, we determined phenotypic diversity using single-cell technologies such as nanometer-scale secondary ion mass spectrometry (NanoSIMS) correlated with confocal laser scanning microscopy (CLSM) and scanning flow-cytometry. We measured functional trait variation between individuals in 13CO2 fixation, 15NH4+ uptake, and variation in physio-morphological cell traits, such as cell size, shape, and auto-fluorescence for various pigments related to photosynthesis. We used the distances between individuals in a multidimensional trait space to derive phenotypic trait-based diversity indices, such as trait richness, trait evenness, and trait divergence. We find that phenotypic trait divergence associates with ecosystem functioning, whereas genetic diversity does not. Including activity-based, single-cell phenotypic measurements with NanoSIMS provided an additional accuracy to the trait-based diversity assessment and allowed us to formulate hypotheses on the mechanisms that shape the correlation between phenotypic diversity and eco-system function. Together, our results show that phenotypic diversity is a meaningful concept to measure microbial biodiversity and associate it with ecosystem functioning. T2 - 8th Congress of European Microbiologists - FEMS 2019 CY - Glasgow, UK DA - 07.11.2019 KW - NanoSIMS KW - Biodiversity PY - 2019 AN - OPUS4-49077 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Single-cell trait-based biodiversity in microbial communities and its link to ecosystem functioning in a stratified lake N2 - A fundamental question in ecology is how biodiversity affects ecosystem function. Biodiversity is commonly estimated based on genetic variation. We investigated a new approach that defines and measures biodiversity in complex microbial communities. We used the variation in multiple functionally-relevant, phenotypic traits measured in parallel in single cells as a metric for microbial phenotypic diversity. We studied phenotypic diversity and ecosystem functioning throughout different photosynthetic layers dominated by divergent microbial communities in the gradient of Lago di Cadagno. We determined genetic diversity by 16S and 18S amplicon sequencing and bulk ecosystem functioning (photosynthesis). In addition, we determined phenotypic diversity using single-cell technologies such as nanometer-scale secondary ion mass spectrometry (NanoSIMS) correlated with confocal laser scanning microscopy (CLSM) and scanning flow-cytometry. We measured functional trait variation between individuals in 13CO2 fixation, 15NH4+ uptake, and variation in physio-morphological cell traits, such as cell size, shape, and auto-fluorescence for various pigments related to photosynthesis. We used the distances between individuals in a multidimensional trait space to derive phenotypic trait-based diversity indices, such as trait richness, trait evenness, and trait divergence. We find that phenotypic trait divergence associates with ecosystem functioning, whereas genetic diversity does not. Including activity-based, single-cell phenotypic measurements with NanoSIMS provided an additional accuracy to the trait-based diversity assessment and allowed us to formulate hypotheses on the mechanisms that shape the correlation between phenotypic diversity and eco-system function. Together, our results show that phenotypic diversity is a meaningful concept to measure microbial biodiversity and associate it with ecosystem functioning. T2 - 8th Congress of European Microbiologists - FEMS 2019 CY - Glasgow, UK DA - 07.11.2019 KW - NanoSIMS KW - Biodiversity PY - 2019 AN - OPUS4-49080 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Persistence as a microbial survival strategy against biocides and its link to antibiotic resistance evolution N2 - Background: One cornerstone to prevent the spread of antibiotic resistant bacteria in clinical settings is the application of disinfectants. However, bacteria can evolve resistance to disinfectants, which in turn can confer cross-resistance to antibiotics. Additionally, clonal bacterial populations can display phenotypic heterogeneity with respect to the tolerance of antibiotic stress leading to a prolonged survival of a sub-population; this phenomenon is termed persistence. Persistence to antibiotics is an evolvable trait and can serve as a stepping stone for the evolution of genetically encoded resistance. Until now, there is a lack of systematic studies that investigate if bacterial populations establish persister subpopulations that tolerate disinfectant stress longer than most of the population. Objectives: Our objective is to investigate if persistence is a bacterial survival strategy against disinfectants. Furthermore, we investigate the mechanisms of disinfectant persistence and if persistence can evolve in the face of fluctuating exposure to disinfectants. Lastly, we test if the evolved mechanisms of disinfectant tolerance lead to disinfectant resistance and if they confer cross-tolerance and cross-resistance against antibiotics. Methods: We use time-kill assays in the presence of disinfectants and experimental evolution combined to whole-genome sequencing in the model organism E. coli. Results: We find persister sub-populations against chlorhexidine and quaternary ammonium compounds, but not to alcohols, aldehydes and oxidative compounds. We will present the relationship of mechanisms known to underlie antibiotic persister formation to the formation of persisters against disinfectants. In addition, we will present data from an ongoing evolution experiment for persistence against disinfectants. T2 - 8th Congress of European Microbiologists - FEMS 2019 CY - Glasgow, UK DA - 07.11.2019 KW - Antimicrobial resistance KW - Biocides KW - Persister cells PY - 2019 AN - OPUS4-49081 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Selection of resistance by antimicrobials used in coatings N2 - Antimicrobial surfaces have broad use in multiple settings including touch surfaces in hospitals, implanted devices, or consumer products. Their aim is to support existing hygiene procedures, and to help combat the increasing threat of antimicrobial resistance. However, concerns have been raised over the potential selection pressure exerted by such surfaces, which might drive the evolution and spread of antimicrobial resistance. In my presentation, I will highlight the risks and knowledge gaps associated with resistance on antimicrobial surfaces by different processes including evolution by de novo mutations and horizontal gene transfer, and species sorting of inherently resistant bacteria dispersed onto antimicrobial surfaces. The latter process has the potential to select for antibiotic resistance via cross-resistance between traits that confer resistance to both the antimicrobial surface coating and antibiotics. Conditions in which antibiotics and antimicrobial coatings are present simultaneously (e.g. implants) will lead to more complex interactions that can either result in the selection for or against antibiotic resistance. We mapped these interactions between several antimicrobials and antibiotics on growth and selection of Pseudomonas aeruginosa. We find prevalent physiological (i.e. synergy and antagonism) and evolutionary (i.e. cross-resistance and collateral sensitivity) combination effects. Understanding these interactions opens the door to tailor therapeutic interventions to select against resistance. In additions, we need new methods and translational studies that investigate resistance development to antimicrobial surfaces under realistic conditions. Therefore, I will present recent developments in our lab on the development of such a method based on existing efficacy standards. T2 - 2021 Fall Meeting of the European Materials Research Society (E-MRS) CY - Online meeting DA - 20.09.2021 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Biofilms KW - Biocides PY - 2021 AN - OPUS4-53645 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Physiological and evolutionary consequences of exposing Pseudomonas aeruginosa to biocide-antibiotic combinations N2 - Antimicrobials can exert specific physiological effects when used in combination that are different from those when applied alone. These effects include physiological effects (i.e. synergy, antagonism and suppression) as well as evolutionary effects on the selection of resistant strains (i.e. cross-resistance and collateral sensitivity). While combination effects have been extensively mapped for antibiotic-antibiotic combinations, the combination effects of antibiotics with antimicrobials used as biocides or antiseptics have not been systematically investigated. Here, we investigated the physiological and evolutionary consequences of combinations of antibiotics (meropenem, gentamicin and ciprofloxacin) and substances used as biocides or antiseptics (octenidine, benzalkonium chloride, cetrimonium bromide, chlorhexidine, povidone-iodine, silver) on growth and selection of Pseudomonas aeruginosa. We find prevalent physiological combination effects with synergy occurring 6 times and antagonism occurring 10 times. The effects are specific to the antibiotic-biocide combination with meropenem showing a tendency for antagonism with biocides (6 of 7), while gentamicin has a tendency for synergy (5 of 7). A particular strong antagonism is apparent for the meropenem-chlorhexidine combination, for which we conducted an in-depth study on the underlying molecular mechanism using RNASeq. Moreover, we find widespread effects of the biocide-antibiotic combinations on selection of P. aeruginosa strains resistant to the antibiotics, including cross-resistance and collateral sensitivity. In conclusion, antibiotics and biocides or antiseptics exert physiological and evolutionary combination effects on the pathogen P. aeruginosa. These effects have consequences for the efficacy of both types of substances and for the selection of antimicrobial resistant strains in clinical applications with combined exposure (e.g. wound care, coated biomaterials). T2 - Antimicrobial Resistance in Biofilms and on Biomaterials CY - Online meeting DA - 10.06.2021 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Biofilms PY - 2021 AN - OPUS4-53162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Development of a laboratory method to assess resistance development of microorganisms to biocides N2 - Bacteria are exposed to biocides through surface disinfection or by antimicrobial surfaces. These stressful environments provide a strong selective pressure for bacteria to adapt. Here, we describe the development of a laboratory method to assess adaption of bacteria by resistance development in response to surface disinfection and antimicrobial surfaces. T2 - OECD, 5th Meeting of the Working Party on Biocides CY - Online meeting DA - 26.05.2021 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Standardization PY - 2021 AN - OPUS4-53163 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Development of a laboratory method to assess resistance development of microorganisms to biocides N2 - Bacteria are exposed to biocides through surface disinfection or by antimicrobial surfaces. These stressful environments provide a strong selective pressure for bacteria to adapt. Here, we describe the development of a laboratory method to assess adaption of bacteria by resistance development in response to surface disinfection and antimicrobial surfaces. T2 - The International Biodeterioration Research Group (IBRG) Spring Meeting 2021 CY - Online meeting DA - 28.06.2021 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Standardization PY - 2021 AN - OPUS4-53164 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Physiological and evolutionary consequences of exposing Pseudomonas aeruginosa to biocide-antibiotic combinations N2 - Antimicrobials can exert specific physiological effects when used in combination that are different from those when applied alone. These effects include physiological effects (i.e. synergy, antagonism and suppression) as well as evolutionary effects on the selection of resistant strains (i.e. cross-resistance and collateral sensitivity). While combination effects have been extensively mapped for antibiotic-antibiotic combinations, the combination effects of antibiotics with antimicrobials used as biocides or antiseptics have not been systematically investigated. Here, we investigated the physiological and evolutionary consequences of combinations of antibiotics (meropenem, gentamicin and ciprofloxacin) and substances used as biocides or antiseptics (octenidine, benzalkonium chloride, cetrimonium bromide, chlorhexidine, povidone-iodine, silver) on growth and selection of Pseudomonas aeruginosa. We find prevalent physiological combination effects with synergy occurring 6 times and antagonism occurring 10 times. The effects are specific to the antibiotic-biocide combination with meropenem showing a tendency for antagonism with biocides (6 of 7), while gentamicin has a tendency for synergy (5 of 7). A particular strong antagonism is apparent for the meropenem-chlorhexidine combination, for which we conducted an in-depth study on the underlying molecular mechanism using RNASeq. Moreover, we find widespread effects of the biocide-antibiotic combinations on selection of P. aeruginosa strains resistant to the antibiotics, including cross-resistance and collateral sensitivity. In conclusion, antibiotics and biocides or antiseptics exert physiological and evolutionary combination effects on the pathogen P. aeruginosa. These effects have consequences for the efficacy of both types of substances and for the selection of antimicrobial resistant strains in clinical applications with combined exposure (e.g. wound care, coated biomaterials). T2 - ASM-FEMS World Microbe Forum CY - Online meeting DA - 20.06.2021 KW - Antimicrobial resistance KW - Antagonism KW - Biofilms PY - 2021 AN - OPUS4-53165 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Resistance evolution towards biocides and antimicrobial surfaces N2 - Biocides, including disinfectants and antimicrobial surfaces (AMCs), are important to prevent the spread of pathogens and antimicrobial resistant bacteria via surfaces. However, concerns have been raised about the evolution and selection of resistance against disinfectants and AMCs. In turn, resistance against disinfectants and AMCs can be associated to antibiotic resistance due to cross-resistance and co-resistance. We need to understand the mechanisms and risks of disinfectants and AMCs for resistance and cross-resistance evolution to optimize their application and safeguard their long-term efficacy. We used adaptive laboratory evolution (ALE) experiments based on repeated exposure of bacteria to disinfectants. Our results show that repeated disinfection of E. coli with benzalkonium chloride in suspension results in a 2000-fold increase in survival within 5 exposure cycles. Adaption is linked to the initial presence of persister cells highly tolerant to benzalkonium chloride. We used the same approach to develop standardizable ALE experiments to determine resistance evolution to AMCs. The results highlight rapid adaptation of E. coli and P. aeruginosa towards copper surfaces. Moreover, there are multiple situations in the clinic or in the environment in which biocides and antibiotics co-occur and in which combination effects can shape their antimicrobial activity or their selective effects. Our work with P. aeruginosa shows prevalent combination effects of biocides and antibiotics, ranging from synergy to antagonism and resulting in the selection for or against antibiotic resistant strains. The combination effects are dependent on the biofilm mode-of-growth, manifesting in apparent differences in the structural arrangement of antibiotic sensitive and resistant strains in biofilms exposed to combinations. Furthermore, biocides affect rates of mutation and horizontal gene transfer, thereby having a potential facilitating effect on resistance evolution. Taken together, our work shows that the role of biocides as potential drivers of resistance evolution and selection deserves further study and regulative action. T2 - Eurobiofilms 2022 CY - Palma, Spain DA - 31.08.2022 KW - Antimicrobial resistance KW - Bacteria KW - Biofilms KW - Biocides KW - Antimicrobial surfaces PY - 2022 AN - OPUS4-55608 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Biocide resistance risk assessment N2 - This presentation details the current status of biocide resistance risk assessment. T2 - Risk assessment of biocide and antibiotic resistance CY - Online meeting DA - 09.03.2022 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Standardization KW - Biocides KW - Risk assessment PY - 2022 UR - https://www.gu.se/en/biocide/risk-assessment-of-biocide-and-antibiotic-resistance AN - OPUS4-56235 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Biocides As Drivers For Antimicrobial Resistance Evolution In The Environment N2 - Antimicrobial resistance (AMR) is a global health problem with the environment being an important compartment for the evolution, selection and transmission of AMR. These processes are impacted by pollution with antibiotics. However, biocides used as disinfectants and material preservatives are major pollutants by far excceding the market for antibiotics in terms of mass. Our work shows that biocides have the potential to affect evolutionary processes towards AMR by increasing the rates of de-novo mutation and conjugation. These effects depend on the species and biocidal substance. Importantly, chlorhexidine and quaternary ammonium compounds (QACs) affect rates of mutation and conjugation at environmentally relevant concentrations in E. coli. Moreover, our results show a connection between the RpoS-mediated general stress and the RecA-linked SOS response with increased rates of mutation and conjugation, but not for all biocides. Furthermore, our work highlights the potential of biocides to contribute to selection and transmission of AMR. We show that the application of biocides, especially QAC disinfectants, leads to the rapid evolution of tolerance (i.e. increased survival) in adaptive laboratory evolution (ALE) experiments. The evolved tolerant strains have a selective advantage in the presence of environmentally-relevant concentrations of antibiotics, which could lead to the stabilization of biocide tolerance in environments where biocides and antibiotics co-occur (e.g. wastewater, animal stables). ALE experiments with biocide tolerant strains indicate a decreased evolvability of resistance to antibiotics. Taken together, our work shows the importance of assessing the contribution of biocides on evolution, selection and transmission of AMR in the environment. T2 - 6th Environmental Dimension of Antibiotic Resistance (EDAR6) CY - Gothenburg, Sweden DA - 22.09.2022 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Biofilms KW - Biocides KW - Risk assessment PY - 2022 AN - OPUS4-56262 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Biocide Resistance - Road to Risk Assessment N2 - This presentation details the current status of biocide resistance risk assessment and provides a roadmap for future activities. T2 - OECD, 6th Meeting of the Working Party on Biocides CY - Paris, France DA - 28.09.2022 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Standardization KW - Biocides KW - Risk assessment PY - 2022 AN - OPUS4-56263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Development of a laboratory method to assess resistance development of microorganisms to biocides – An update N2 - This presentation describes the development of a laboratory method to assess resistance development of microorganisms to biocides and antimicrobial surfaces. T2 - The International Biodeterioration Research Group (IBRG) autumn meeting 2022 CY - Online meeting DA - 11.10.2022 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Standardization KW - Biocides KW - Risk assessment PY - 2022 AN - OPUS4-56264 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - BIOCIDE N2 - This presentation gives an overview about the BIOCIDE project performed with the Aquatic Pollutants joint call. T2 - Aquatic Pollutants TransNet workshop CY - Online meeting DA - 09.11.2022 KW - Antimicrobial resistance KW - Bacteria KW - Biofilms KW - Biocides KW - Risk assessment KW - Wastewater PY - 2022 AN - OPUS4-56265 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Resistance evolution towards biocides and antimicrobial surfaces N2 - This presentation describes our work at BAM on resistance evolution towards biocides and antimicrobial surfaces. T2 - Break biofilms workshop CY - Vienna, Austria DA - 16.01.2023 KW - Antimicrobial resistance KW - Bacteria KW - Biofilms KW - Biocides PY - 2023 AN - OPUS4-57857 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Development of a laboratory method to assess resistance development of microorganisms to biocides – An update N2 - This presentation describes our efforts at BAM towards the development of a laboratory method to assess resistance development of microorganisms to biocides. T2 - The International Biodeterioration Research Group (IBRG) spring meeting 2023 CY - Online meeting DA - 05.03.2023 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Standardization KW - Biocides PY - 2023 AN - OPUS4-57858 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Phenotypic and evolutionary responses of bacteria to disinfection N2 - Disinfectants are important to prevent the transmission of pathogens, especially in the face of the current antibiotic resistance crisis. The crisis is further exacerbated by phenotypically tolerant persister subpopulations that can survive transient antibiotic treatment and facilitate resistance evolution. Despite the transient nature of disinfectant application, persistence to disinfectants and its role for the evolution of tolerance and cross-resistance to antibiotics has not been studied. Our work shows that E. coli displays persistence against several widely used disinfectants, including benzalkonium chloride (BAC), didecyldimethylammoniumchlorid (DDAC) and isopropanol. The molecular mechanism of BAC persistence is triggered in stationary phase and affected by several antibiotic persister genes (hipA, tisB, tolC, relA, spoT). Experimental evolution and population dynamic modeling show that repeated failure of disinfection due to persisters rapidly selects for BAC tolerance underpinned by reduced cell surface charge due to mutations in genes related to lipid A acylation (lpxML). Furthermore, evolved BAC tolerance affects the susceptibility to antibiotics, leading to positive selection of disinfectant tolerant strains at environmentally relevant antibiotic concentrations and variations in evolvability of antibiotic resistance due to epistatic effects. These results highlight the need for faithful application of disinfectants to steward their efficacy and the efficacy of antibiotics. A better understanding of the bacterial response to disinfectants is crucial to understand and avert the ongoing antimicrobial resistance crisis. T2 - Gordon Research Conference - Molecular mechanisms of evolution CY - Easton, MA, United States DA - 25.06.2023 KW - Antimicrobial resistance KW - Bacteria KW - Disinfection KW - Biocides PY - 2023 AN - OPUS4-57861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Risk Assessment of Biocide Resistance N2 - This presentation details approaches for the risk assessment of biocide resistance. Different methods are presented to acquire the necessary data for such risk assessments. T2 - OECD, 7th Meeting of the Working Party on Biocides CY - Leiden, Netherlands DA - 18.09.2023 KW - Antimicrobial resistance KW - Bacteria KW - Standardization KW - Biocides PY - 2023 AN - OPUS4-59062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, Beate A1 - Pfeiffer, F. A1 - Dyall-Smith, M. A1 - Kunte, Hans-Jörg T1 - Genome Sequence of Cupriavidus campinensis Strain G5, a Member of a Bacterial Consortium Capable of Polyethylene Degradation N2 - Nine different bacterial isolates were recovered from landfills. Each isolate was obtained in pure culture. As a consortium, the bacteria degrade polyethylene. The complete genome sequence of strain G5 was determined by PacBio sequencing. Using the TYGS for taxonomic classification, strain G5 was assigned to the species Cupriavidus campinensis. KW - Polyethylene KW - Cupriavidus campinensis KW - Plastic degradation KW - Genome sequence PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-557897 DO - https://doi.org/10.1128/mra.00553-22 SP - 1 EP - 2 PB - ASM AN - OPUS4-55789 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, Beate A1 - Pfeiffer, F. A1 - Dyall-Smith, M. A1 - Kunte, Hans-Jörg T1 - Genome Sequence of Micromonospora aurantiaca Strain G9, a Member of a Bacterial Consortium Capable of Polyethylene Degradation N2 - Nine different bacterial isolates were recovered from landfills. Each isolate was obtained in pure culture. As a consortium, the bacteria degrade polyethylene. The complete genome sequence of strain G9 was determined by PacBio sequencing. Using the TYGS server for taxonomic classification, strain G9 was assigned to the species Micromonospora aurantiaca. KW - Polyethylene KW - Micromonospora aurantiaca KW - Degradation KW - iChip PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547181 DO - https://doi.org/10.1128/mra.01148-21 SN - 2576-098X VL - 11 IS - 5 SP - 1 EP - 2 PB - American Society for Microbiology CY - Washington, DC AN - OPUS4-54718 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, Beate A1 - Pfeiffer, F. A1 - Dyall-Smith, M. A1 - Kunte, Hans-Jörg T1 - Genome Sequence of Pseudomonas veronii Strain G2, a Member of a Bacterial Consortium Capable of Polyethylene Degradation N2 - Nine different bacterial isolates were recovered from landfills. Each isolate was obtained in pure culture. As a consortium, the bacteria degrade polyethylene. The complete genome sequence of strain G2 was determined by PacBio sequencing. Using the TYGS server for taxonomic classification, strain G2 was assigned to the species Pseudomonas veronii. KW - Polyethylene KW - Next generation sequencing KW - Pseudomonas veronii PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548973 DO - https://doi.org/10.1128/mra.00365-22 SP - 1 EP - 2 PB - ASM AN - OPUS4-54897 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Selina A1 - Rodríguez-Rojas, A. A1 - Rolff, J. A1 - Schreiber, Frank T1 - Biocides used as material preservatives modify rates of de novo mutation and horizontal gene transfer in bacteria N2 - Antimicrobial resistance (AMR) is a global health problem with the environment being an important compartment for the evolution and transmission of AMR. Previous studies showed that de-novo mutagenesis and horizontal gene transfer (HGT) by conjugation or transformation – important processes underlying resistance evolution and spread - are affected by antibiotics, metals and pesticides. However, natural microbial communities are also frequently exposed to biocides used as material preservatives, but it is unknown if these substances induce mutagenesis and HGT. Here, we show that active substances used in material preservatives can increase rates of mutation and conjugation in a species- and substance-dependent manner, while rates of transformation are not increased. The bisbiguanide chlorhexidine digluconate, the quaternary ammonium compound didecyldimethylammonium chloride, the metal copper, the pyrethroid-insecticide permethrin, and the azole-fungicide propiconazole increase mutation rates in Escherichia coli, whereas no increases were identified for Bacillus subtilis and Acinetobacter baylyi. Benzalkonium chloride, chlorhexidine and permethrin increased conjugation in E. coli. Moreover, our results show a connection between the RpoS-mediated general stress and the RecA-linked SOS response with increased rates of mutation and conjugation, but not for all biocides. Taken together, our data show the importance of assessing the contribution of material preservatives on AMR evolution and spread. KW - Mutation rate KW - Horizontal gene transfer KW - Biocides PY - 2022 DO - https://doi.org/10.1016/j.jhazmat.2022.129280 SN - 0304-3894 VL - 437 SP - 1 EP - 13 PB - Elsevier CY - Amsterdam AN - OPUS4-55261 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina T1 - Priming in soil microbial communities mediated by biocide-induced horizontal gene-transfer N2 - Soil microbes are exposed to different environmental stressors originating from various sources. Biocides used as material preservatives can represent environmental stressors since they are in direct contact with the environment including soil. Microorganism in soils can adapt to stress by different mechanisms; for example, by transferring mobile genetic elements via horizontal gene transfer (HGT). Here, we hypothesize that material preservatives can cause increased frequencies of HGT (i.e. altered community permissiveness) facilitating microbial community adaptation to stress. Furthermore, we hypothesize that soil microbial communities are primed by biocide exposure facilitating the response to different types of stresses. We will incubate soil mesocosms with selected biocides to investigate if these compounds promote HGT of plasmids that carry resistance genes in soil microbial communities. Subsequently, we will prime the soil microbial community with sub-inhibitory concentrations of biocides followed by exposure to toxic biocide concentrations or other types of common environmental stresses including metals, antibiotics, and salt. Using suitable control experiments, a shift in the functional response of the primed as compared to the non-primed community would indicate that biocides prime microbial communities via HGT. Together these results will elucidate the effect of biocides on HGT-mediated adaptation to environmental stressors in soil microbial communities. T2 - SFB973 Stress Symposium CY - Berlin, Germany DA - 09.04.2018 KW - Resistance evolution KW - Horizontal gene transfer HGT KW - Biocides KW - Microbiology PY - 2018 AN - OPUS4-46285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina T1 - Priming in soil microbial communities mediated by biocide-induced horizontal gene-transfer N2 - Soil microbes are exposed to different environmental stressors originating from various sources. Biocides used as material preservatives can represent environmental stressors since they are in direct contact with the environment including soil. Microorganism in soils can adapt to stress by different mechanisms; for example, by transferring mobile genetic elements via horizontal gene transfer (HGT). Here, we hypothesize that material preservatives can cause increased frequencies of HGT (i.e. altered community permissiveness) facilitating microbial community adaptation to stress. Furthermore, we hypothesize that soil microbial communities are primed by biocide exposure facilitating the response to different types of stresses. We will incubate soil mesocosms with selected biocides to investigate if these compounds promote HGT of plasmids that carry resistance genes in soil microbial communities. Subsequently, we will prime the soil microbial community with sub-inhibitory concentrations of biocides followed by exposure to toxic biocide concentrations or other types of common environmental stresses including metals, antibiotics, and salt. Using suitable control experiments, a shift in the functional response of the primed as compared to the non-primed community would indicate that biocides prime microbial communities via HGT. Together these results will elucidate the effect of biocides on HGT-mediated adaptation to environmental stressors in soil microbial communities. T2 - BAM PhD Day 2018 CY - Berlin, Germany DA - 31.05.2018 KW - Resistance evolution KW - Horizontal gene transfer HGT KW - Biocides KW - Microbiology PY - 2018 AN - OPUS4-46286 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina T1 - Antimicrobial resistance in soil microbes mediated by resistance evolution and horizontal gene transfer (HGT) N2 - Soil microbes are exposed to different environmental stressors originating from various sources. Biocides used as material preservatives can represent environmental stressors since they are in direct contact with the environment including soil. Microorganism in soils can adapt to stress by different mechanisms; for example, by the evolution of resistance by de novo mutations or acquisition of resistance genes via horizontal gene transfer (HGT). Here, we hypothesize that material preservatives could enhance the evolution of biocide resistance enabling the potential for cross-resistance to antibiotics. Furthermore, we hypothesize that material preservatives can cause increased frequencies of HGT (i.e. altered community permissiveness) facilitating microbial community adaptation to stress. We will culture soil microorganism with increasing concentrations of selected biocides followed by antibiotic susceptibility determination. Moreover, we will incubate soil mesocosms with selected biocides to investigate if these compounds promote HGT of plasmids that carry resistance genes in soil microbial communities. Together these results will elucidate the potential for the evolution of biocide resistance and cross-resistance to antibiotics as well as the effect of biocides on adaptation to environmental stressors in soil microbial communities. T2 - 17th International Symposium on Microbial Ecology CY - Leipzig, Germany DA - 12.08.2018 KW - Resistance evolution KW - Horizontal gene transfer HGT KW - Biocides KW - Microbiology PY - 2018 AN - OPUS4-46288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina T1 - Antimicrobial resistance in soil microbes mediated by resistance evolution and horizontal gene transfer (HGT) N2 - Questions: Biocides are in contact with soils through direct application and passive leaching from protected materials. Consequently, soil microorganisms are exposed to toxic biocides even though they are not their primary targets. Soil is a large reservoir of microbial diversity and has been hypothesized to be a crucial factor for the evolution and spread of antimicrobial resistance. Currently, there is little knowledge on how biocides used to protect materials affect the evolution and spread of resistance. Thus, our aim is to investigate the risk for the evolution of biocide resistance and cross-resistance to antibiotics. In addition, we aim to elucidate the affect of biocides on the spread of resistance via horizontal gene transfer (HGT). Methods: In laboratory evolution experiments we culture selected model soil microorganism with representative biocides followed by antibiotic cross-resistance determination and genome sequencing. Moreover, we investigate if the selected biocides affect the HGT frequency of plasmids that carry resistance genes among soil microorganism and the consequences for survival of the affected populations. Results: Our initial results show only small increases of biocide resistance during serial transfers in the presence of biocides. One reason for this might be the narrow selective window for biocide resistance due to steep dose-response relationships. Furthermore, we will present results from ongoing experiments on the effects of material preservatives on HGT frequencies facilitating microbial community adaptation to stress. Conclusions: The results will enable future risk assessment regarding resistance evolution for biocides used as material preservatives. T2 - 5th International Symposium on the Environmental Dimension of Antibiotic Resistance (EDAR) CY - Hong Kong, China DA - 09.06.2019 KW - Biocides KW - Horizontal gene transfer HGT KW - Microbiology KW - Resistance evolution KW - Antimicrobial resistance PY - 2019 AN - OPUS4-49401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina T1 - Antimicrobial resistance in soil microbes mediated by resistance evolution and horizontal gene transfer (HGT) N2 - Question: Biocides are in contact with soils through direct application and passive leaching from protected materials. Consequently, soil microorganisms are exposed to toxic biocides even though they are not their primary targets. Soil is a large reservoir of microbial diversity and has been hypothesized to be a crucial factor for the evolution and spread of antimicrobial resistance. Currently, there is little knowledge on how biocides used to protect materials affect the evolution and spread of resistance. Thus, our aim is to investigate the risk for the evolution of biocide resistance and cross-resistance to antibiotics. In addition, we aim to elucidate the affect of biocides on the spread of resistance via horizontal gene transfer (HGT). Methods: In laboratory evolution experiments we culture selected model soil microorganism with representative biocides followed by antibiotic cross-resistance determination and genome sequencing. Moreover, we investigate if the selected biocides affect the HGT frequency of plasmids that carry resistance genes among soil microorganism and the consequences for survival of the affected populations. Results: Our initial results show only small increases of biocide resistance during serial transfers in the presence of biocides. One reason for this might be the narrow selective window for biocide resistance due to steep dose-response relationships. Furthermore, we will present results from ongoing experiments on the effects of material preservatives on HGT frequencies facilitating microbial community adaptation to stress. Conclusions: The results will enable future risk assessment regarding resistance evolution for biocides used as material preservatives. T2 - 8th Congress of European Microbiologists - FEMS 2019 CY - Glasgow, UK DA - 07.07.2019 KW - Biocides KW - Horizontal gene transfer HGT KW - Microbiology KW - Resistance evolution KW - Antimicrobial resistance PY - 2019 AN - OPUS4-49402 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina T1 - Antimicrobial resistance in soil microbes mediated by resistance evolution and horizontal gene transfer (HGT) N2 - Question: Biocides are in contact with soils through direct application and passive leaching from protected materials. Consequently, soil microorganisms are exposed to toxic biocides even though they are not their primary targets. Soil is a large reservoir of microbial diversity and has been hypothesized to be a crucial factor for the evolution and spread of antimicrobial resistance. Currently, there is little knowledge on how biocides used to protect materials affect the evolution and spread of resistance. Thus, our aim is to investigate the risk for the evolution of biocide resistance and cross-resistance to antibiotics. In addition, we aim to elucidate the affect of biocides on the spread of resistance via horizontal gene transfer (HGT). Methods: In laboratory evolution experiments we culture selected model soil microorganism with representative biocides followed by antibiotic cross-resistance determination and genome sequencing. Moreover, we investigate if the selected biocides affect the HGT frequency of plasmids that carry resistance genes among soil microorganism and the consequences for survival of the affected populations. Results: Our initial results show only small increases of biocide resistance during serial transfers in the presence of biocides. One reason for this might be the narrow selective window for biocide resistance due to steep dose-response relationships. Furthermore, we will present results from ongoing experiments on the effects of material preservatives on HGT frequencies facilitating microbial community adaptation to stress. Conclusions: The results will enable future risk assessment regarding resistance evolution for biocides used as material preservatives. T2 - Symposium für Doktorandinnen und Doktoranden – 2019 CY - Berlin, Germany DA - 27.09.2019 KW - Biocides KW - Horizontal gene transfer HGT KW - Microbiology KW - Resistance evolution KW - Antimicrobial resistance PY - 2019 AN - OPUS4-49404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina T1 - Biocides Used as Material Preservatives Modify Rates of De Novo Mutation And Horizontal Gene Transfer in Bacteria N2 - Antimicrobial resistance (AMR) is an important global health problem. The environment has been regocnized as an improtant compartment for the occurance, evolution and transmission of AMR. Biocides used as material preservatives are in contact with the environment and natural microbial communities through direct application and passive leaching from protected materials. It has been shown that environmental contaminants, such as antibiotics, metals and pesticides, can affect resistance evolution and spread by modifying the underlying processes of de novo mutagenesis, horizontal gene transfer and selection. However, it is unknown if material preservatives are involved in these processes and thereby can also drive AMR in the environment. Here, we investigate the effect of material preservatives on rates of de novo mutation and horizontal gene transfer (HGT) in Escherichia coli and the model soil microorganisms Acinetobacter baylyi and Bacillus subtilis. To this end, we determined the effects of material preservatives on the mutation rates and HGT with the Luria-Delbrück fluctuation assay and a conjugation assay with the broad host-range plasmid pKJK5 and a transformation assay. Our data shows that the quaternary ammonium compound DDAC, copper, the pyrethroid insecticide permethrin and the azole fungicide propiconazole significantly increase mutation rates in E. coli, whereas A. baylyi and B. subtilis are not significantly affected. Moreover, we show that the carbamate IPBC and the insecticide permethrin affect HGT in a concentration dependent manner. Investigations with reporter strains for bacterial stress response pathways show that induction of the general stress response (rpoS) and components of the SOS response (recA) underlie the effects of most biocides on mutation rates and HGT. Taken together, our data is important for assessing the contribution of biocides on AMR evolution and spread in the environment. T2 - World Microbe Forum (ASM, FEMS) CY - Online meeting DA - 20.06.2021 KW - Biocides KW - Horizontal gene transfer KW - Mutation rate PY - 2021 UR - https://www.abstractsonline.com/pp8/#!/9286/presentation/11692 AN - OPUS4-54211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina T1 - Antimicrobial resistance in soil microbes mediated by resistance evolution and horizontal gene transfer (HGT) N2 - Biocides are in contact with soils through direct application and passive leaching from protected materials. Consequently, soil microorganisms are exposed to biocides even though they are not their primary targets. Soil is a large reservoir of microbial diversity and has been hypothesized to be a crucial factor for the evolution and spread of antimicrobial resistance. Currently, there is little knowledge on how biocides used to protect materials affect the evolution and spread of resistance. Thus, our aim is to investigate the risk for the evolution of biocide resistance and cross-resistance to antibiotics. In addition, we aim to elucidate the affect of biocides on the spread of resistance via horizontal gene transfer (HGT). In adaptive laboratory evolution experiments we cultured selected model soil microorganism with representative biocides under selection regimes with increasing and stable biocide concentrations followed by antibiotic and biocide cross-resistance determination. Moreover, we investigate if the selected biocides affect the rates of de novo mutations and HGT of plasmids that carry resistance genes among soil microorganism. Our results show only small increases of biocide resistance during serial transfers under increasing biocide concentrations. One reason for this might be the narrow selective window for biocide resistance due to steep dose-response relationships. Furthermore, our results indicate that a stable low-level biocide regime did not select for high level cross-resistance to antibiotics and other biocides. Moreover, material preservatives affected the rates of HGT via conjugation and the mutation rates at sub-inhibitory concentrations. The results will enable future risk assessment regarding resistance evolution for biocides used as material preservatives. T2 - 4th Evo Eco PhD Meeting CY - Lutherstadt Wittenberg DA - 04.03.2020 KW - Microbiology KW - Biocides KW - Horizontal gene transfer HGT KW - Resistance evolution KW - Antimicrobial resistance PY - 2020 AN - OPUS4-51313 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina T1 - Effect of biocides on the evolution and spread of resistance N2 - Biocides used as material preservatives are in contact with various environments during direct application or passive leaching from protected materials. Antimicrobial resistance (AMR) is a global health problem and the environment is an important compartment for the evolution and transmission of AMR. Soil is an environment with a large reservoir of natural microbial communities and antimicrobial resistance (AMR) genes. Those natural microbial communities are frequently exposed to biocides used as material preservatives. Previous studies have shown that antibiotics, metals and pesticides affect the underlying processes of resistance evolution and spread; namely de novo mutagenesis and horizontal gene transfer by conjugation and transformation in microbial communities. However, it is unknown if active substances used in material preservatives are involved in these processes. We show that biocides used as material preservatives affect rates of mutation and conjugation in microorganism in a species- and substance-dependent manner, while rates of transformation are not directly affected. Our data highlights the importance of assessing the contribution of material preservatives on AMR evolution and spread in the environment. T2 - Microbiome Network Meeting CY - Berlin, Germany DA - 20.07.2022 KW - Biocides KW - Antimicrobial resistance KW - Horizontal gene transfer KW - Mutation rate PY - 2022 AN - OPUS4-56426 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina T1 - Effect of biocides on the evolution and spread of resistance N2 - Biocides used as material preservatives are in contact with various environments during direct application or passive leaching from protected materials [1]. Antimicrobial resistance (AMR) is a global health problem and the environment is an important compartment for the evolution and transmission of AMR [2,3]. Soil is an environment with a large reservoir of natural microbial communities and antimicrobial resistance (AMR) genes. Those natural microbial communities are frequently exposed to biocides used as material preservatives. Previous studies have shown that antibiotics, metals and pesticides affect the underlying processes of resistance evolution and spread; namely de novo mutagenesis and horizontal gene transfer by conjugation and transformation in microbial communities. However, it is unknown if active substances used in material preservatives are involved in these processes. We show that biocides used as material preservatives affect rates of mutation and conjugation in microorganism in a species- and substance-dependent manner, while rates of transformation are not directly affected. Our data highlights the importance of assessing the contribution of material preservatives on AMR evolution and spread in the environment. T2 - RokoCon2022 CY - Berlin, Germany DA - 29.09.2022 KW - Biocide KW - Antimicrobial resistance KW - Tolerance KW - Horizontal gene transfer KW - Mutation rate PY - 2022 AN - OPUS4-56431 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina T1 - Bacterial resistance evolution towards disinfectants and antimicrobial surfaces and development of a standardized test N2 - Question Disinfectants and antimicrobial surfaces (AMCs) are important tools to prevent the spread of pathogens and antimicrobial resistant bacteria. However, concerns have been raised about the possibility for the evolution and selection of resistance against disinfectants and AMCs. In turn, resistance against disinfectants and AMCs can be associated to antibiotic resistance due to cross-resistance - a single mechanism conferring resistance to a disinfectant and an antibiotic- and co-resistance - two distinct mechanisms physically linked on e.g. a plasmid. The risk for resistance and cross-resistance during use of biocides (including disinfectants and AMCs) must be evaluated during authorization according to the EU biocidal product regulation. However, to date there is a lack of standardized methods that support risk assessment during the authorization process. Methods We used adaptive laboratory evolution (ALE) experiments which are based on repeated exposure of bacteria to disinfectants or AMCs. The experiments are followed by phenotypic (antimicrobial susceptibility testing) and genotypic (whole genome sequencing) characterization of the evolved strains. The basic idea of these experiments is to expose bacteria to lethal conditions and select for mutants with increased survival. This approach is fundamentally different to other ALE experiments, which commonly select for increased growth at subinhibitory concentrations. However, selection for increased survival represents a selective pressure that more realistically reflects selection under in-use conditions of disinfectants and AMCs. Results First, we studied adaptation of E. coli during repeated disinfection with benzalkonium chloride in a suspension assay. The experiments showed a 2000-fold increase in survival within 5 exposure cycles. The adaptive changes are linked to highly parallel mutations in genes related to lipid A biosynthesis, less negative cell surface charge, reduced growth rate and increased competitive ability in the presence of certain antibiotics. We use the same approach to develop standardizable ALE experiments based upon accepted standards that are used to determine the efficacy of disinfectants (EN 13697) and antimicrobial surfaces (ISO 22196). The results highlight pronounced adaptation of different test strains towards surface disinfection (benzalkonium chloride and isopropanol) and AMCs (copper). Conclusion Bacteria can adapt with increased survival towards lethal stress imposed by disinfectants and AMCs. The adaptive ability of bacteria to disinfectants and AMCs can be determined in a standardized manner. T2 - 74. Jahrestagung der Deutschen Gesellschaft für Hygiene und Mikrobiologie [DGHM] e. V. CY - Berlin, Germany DA - 05.09.2022 KW - Antimicrobial surfaces KW - ISO22196 KW - Antimicrobial resistance KW - Round robin test PY - 2022 AN - OPUS4-56432 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina T1 - Biocides Used as Material Preservatives Modify Rates of de novo Mutation and Horizontal Gene Transfer in Bacteria N2 - Biocides used as material preservatives are in contact with various environments during direct application or passive leaching from protected materials. Antimicrobial resistance (AMR) is a global health problem and the environment is an important compartment for the evolution and transmission of AMR. Soil is an environment with a large reservoir of natural microbial communities and antimicrobial resistance (AMR) genes. Those natural microbial communities are frequently exposed to biocides used as material preservatives. Previous studies have shown that antibiotics, metals and pesticides affect the underlying processes of resistance evolution and spread; namely de novo mutagenesis and horizontal gene transfer by conjugation and transformation in microbial communities. However, it is unknown if active substances used in material preservatives are involved in these processes. We show that biocides used as material preservatives affect rates of mutation and conjugation in microorganism in a species- and substance-dependent manner, while rates of transformation are not directly affected. Our data highlights the importance of assessing the contribution of material preservatives on AMR evolution and spread in the environment. T2 - Microbiome Network Meeting CY - Berlin, Germany DA - 20.07.2022 KW - Biocides KW - Horizontal gene transfer KW - Mutation rate PY - 2022 AN - OPUS4-55263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Schmidt, Selina T1 - Effects of biocides on processes underlying resistance evolution N2 - Antimicrobial resistance (AMR) is a global health problem. It is well known that antibiotics can drive evolutionary processes that underlie antimicrobial resistance (AMR) evolution and spread in clinical and environmental settings. In contrast, less is known about the effects of antimicrobial substances that are used as biocides (i.e. disinfectants and preservatives) on AMR evolution and spread. Biocides are present in various settings, interacting with diverse microbial communities. Therefore, it is crucial to evaluate their role in the evolution and dissemination of antimicrobial resistance. Biocides occur in a wide range of concentrations in various environmental settings. By examining how the various concentrations affect selection mechanisms, we gain insights into potential developments related to antimicrobial resistance. The aim of this PhD thesis is to investigate the effects of biocides on processes underlying resistance evolution. Specifically, the work focused on key mechanisms for resistance spread, resistance evolution, and the effect of selection pressures on evolved resistance mechanisms. The thesis is structured around three major objectives: (i) to determine the effect of biocides on the evolution of resistance by affecting the rate of occurrence of de novo mutations, (ii) to determine the effect of biocides on the spread of resistance genes by modifying the rate of horizontal gene transfer (HGT) processes, and (iii) to investigate the selective drivers of the emergence of antimicrobial resistance in adaptive laboratory evolution (ALE) experiments. De-novo mutations are spontaneous mutations that occur at a certain rate in microorganisms. The effect of biocides at subinhibitory environmentally relevant concentrations on the mutation rate in Acinetobacer baylyi, Bacillus subtilis and Escherichia coli was assessed with the fluctuation assay. The results showed that biocides affected mutation rates in a species and substance dependent matter. The bisbiguanide chlorhexidine digluconate, the quaternary ammonium compound didecyldimethylammonium chloride, the metal copper, the pyrethroid-insecticide permethrin, and the azole-fungicide propiconazole increase mutation rates in E. coli, whereas no increases were identified for B. subtilis and A. baylyi. Horizontal gene transfer refers to diverse mechanisms that mediate the transfer of mobile genetic elements between microorganisms. This work focused on conjugation and transformation. Conjugation is a process whereby a conjugative plasmid is transferred from a donor cell to a recipient cell. Transformation is a process whereby exogenous donor DNA is taken up into a recipient cell and integrated into the recipient’s’ genome. The effects of subinhibitory environmentally relevant biocide concentrations on the conjugation rate of E. coli and the transformation rate of the naturally competent organisms A. baylyi in were assessed. The results showed that benzalkonium chloride (BAC), chlorhexidine and permethrin increased conjugation in E. coli, while none of the biocides increased transformation rates in A. baylyi. To further understand the molecular mechanisms underlying the effects on mutation and conjugation rates, I investigated the induction of the RpoS-mediated general stress and the RecA-linked SOS response upon biocide exposure. The results show a link between the general stress and the SOS response with increased rates of mutation and conjugation, but not for all biocides. One major approach to study the evolutionary response of bacteria to antimicrobials are ALE experiments with growth at subinhibitory concentrations linked to serial subculturing over many generations. Such experiments have been used to study resistance evolution to antibiotics and biocides. However, previous work showed that adaptation to biocide stress may be mediated by different evolutionary drivers. Here, I investigated the contributions of evolution for increased survival as opposed to improved growth in ALE experiments with E. coli exposed to subinhibitory BAC concentrations. Two distinct evolutionary treatments selecting for survival only or survival and growth led to specific evolutionary adaptations apparent in the phenotypes and genotypes of the evolved populations. Populations growing in the presence of BAC evolved increased fitness in the presence of BAC associated with higher resistance to BAC and cross-resistance to antibiotics, while this was not the case for populations evolving for increased survival only. Genotypic characterization by whole genome sequencing of the evolved populations revealed parallelism in mutated genes among replicate populations and distinct differences across treatments. Treatments selecting for survival and growth showed mutations in stress response related genes (hslO and tufA), while selection for survival led to mutations in genes for metabolic regulation (cyaA) and cellular structure (flagella fliJ). In summary, this thesis shows that biocides affect AMR evolution and emphasizes the importance of understanding of how biocides impact the molecular and evolutionary process that underlie AMR evolution. KW - Biocides KW - Antimicrobial resistances KW - Microbial survival mechanisms PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:188-refubium-43383-9 SP - 1 EP - 101 PB - Freie Universität CY - Berlin AN - OPUS4-60678 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -