TY - CONF A1 - Schwibbert, Karin A1 - Menzel, Friederike T1 - Bacterial Adhesion on Different Materials N2 - Biofilm formation on materials leads to high costs in industrial processes, as well as in medical applications. This fact has stimulated interest in the development of new materials with improved surfaces to reduce bacterial adhesion. We present a flow chamber system to test and quantify bacterial adhesion on materials that are part of antifouling concepts. The adhesion process is standardized and can be adapted to different bacteria in subaquatic of subaerial environments. It is combined with a standardized evaluation procedure based on statistical evidence. T2 - AMiCI Workshop Berlin CY - BAM Berlin, Germany DA - 07.06.2018 KW - Bacterial adhesion KW - Flow chamber system KW - Biofilm formation KW - Standardized test and quantification procedure PY - 2018 AN - OPUS4-46374 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schwibbert, Karin A1 - Menzel, F. A1 - Epperlein, N. A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - Bacterial adhesion on femtosecond laser-modified polyethylene N2 - In this study, femtosecond laser-induced sub-micrometer structures are generated to modify polyethylene (PE) surface topographies. These surfaces were subjected to bacterial colonization studies with Escherichia coli and Staphylococcus aureus as test strains. The results reveal that the nanostructures do not influence S. aureus coverage, while the adhesion of E. coli is reduced. KW - Bacterial adhesion KW - Laser-modified surface KW - Polyethylene KW - Laser-induced nanostructures KW - Biofilm PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-492280 DO - https://doi.org/10.3390/ma12193107 VL - 12 IS - 19 SP - 3107 PB - MDPI CY - Basel, Schweiz AN - OPUS4-49228 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schwabe, M. A1 - Griep, S. A1 - Schmidtberg, H. A1 - Plarre, Rüdiger A1 - Goesmann, A. A1 - Vilcinskas, A. A1 - Vogel, H. A1 - Brinkrolf, K. T1 - Next-Generation Sequencing Analysis of the Tineola bisselliella Larval Gut Transcriptome Reveals Candidate Enzymes for Keratin Digestion N2 - The clothes moth Tineola bisselliella is one of a few insects that can digest keratin, leading to the destruction of clothing, textiles and artwork. The mechanism of keratin digestion is not yet fully understood, partly reflecting the lack of publicly available genomic and transcriptomic data. Here we present a high-quality gut transcriptome of T. bisselliella generated from larvae reared on keratin-rich and keratin-free diets. The overall transcriptome consists of 428,221 contigs that were functionally annotated and screened for candidate enzymes involved in keratin utilization. As a mechanism for keratin digestion, we identified cysteine synthases, cystathionine β-synthases and cystathionine γ-lyases. These enzymes release hydrogen sulfite, which may reduce the disulfide bonds in keratin. The dataset also included 27 differentially expressed contigs with trypsin domains, among which 20 were associated with keratin feeding. Finally, we identified seven collagenases that were upregulated on the keratin-rich diet. In addition to this enzymatic repertoire potentially involved in breaking down keratin, our analysis of poly(A)-enriched and poly(A)-depleted transcripts suggested that T. bisselliella larvae possess an unstable intestinal microbiome that may nevertheless contribute to keratin digestion KW - Insect biotechnology KW - Gene expression KW - RNA-Sequencing KW - Transcriptomics KW - Tineola bisselliella KW - Keratin PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529902 DO - https://doi.org/10.3390/genes12081113 VL - 12 IS - 8 SP - 1113 PB - MDPI AN - OPUS4-52990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schulze-Makuch, D. A1 - Lipus, D. A1 - Arens, F. L. A1 - Baque, M. A1 - Bornemann, T. L. V. A1 - de Vera, J. P. A1 - Flury, M. A1 - Froesler, J. A1 - Heinz, J. A1 - Hwang, Y. A1 - Kounaves, S. P. A1 - Mangelsdorf, K. A1 - Meckenstock, R. U. A1 - Pannekens, M. A1 - Probst, A. J. A1 - Saenz, J. S. A1 - Schirmack, J. A1 - Schloter, M. A1 - Schmitt-Kopplin, P. A1 - Schneider, Beate A1 - Uhl, J. A1 - Vestergaard, G. A1 - Valenzuela, B. A1 - Zamorano, P. A1 - Wagner, D. T1 - Microbial hotspots in lithic microhabitats inferred from DNA fractionation and metagenomics in the Atacama Desert N2 - The existence of microbial activity hotspots in temperate regions of Earth is driven by soil heterogeneities, especially the temporal and spatial availability of nutrients. Here we investigate whether microbial activity hotspots also exist in lithic microhabitats in one of the most arid regions of the world, the Atacama Desert in Chile. While previous studies evaluated the total DNA fraction to elucidate the microbial communities, we here for the first time use a DNA separation approach on lithic microhabitats, together with metagenomics and other analysis methods (i.e., ATP, PLFA, and metabolite analysis) to specifically gain insights on the living and potentially active microbial community. Our results show that hypolith colonized rocks are microbial hotspots in the desert environment. In contrast, our data do not support such a conclusion for gypsum crust and salt rock environments, because only limited microbial activity could be observed. The hypolith community is dominated by phototrophs, mostly Cyanobacteria and Chloroflexi, at both study sites. The gypsum crusts are dominated by methylotrophs and heterotrophic phototrophs, mostly Chloroflexi, and the salt rocks (halite nodules) by phototrophic and halotolerant endoliths, mostly Cyanobacteria and Archaea. The major environmental constraints in the organic-poor arid and hyperarid Atacama Desert are water availability and UV irradiation, allowing phototrophs and other extremophiles to play a key role in desert ecology. KW - Desert ecology KW - Extremophile KW - Hyperarid PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527959 DO - https://doi.org/10.3390/microorganisms9051038 SN - 2076-2607 VL - 9 IS - 5 SP - 1038 PB - MDPI CY - Basel AN - OPUS4-52795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schulze-Makuch, D. A1 - Haque, S. A1 - Beckles, D. A1 - Schmitt-Kopplin, P. A1 - Harir, M. A1 - Schneider, Beate A1 - Stumpp, C. A1 - Wagner, D. T1 - A chemical and microbial characterization of selected mud volcanoes in Trinidad reveals pathogens introduced by surface water and rain water N2 - Terrestrial mud volcanoes are unique structures driven by tectonic pressure and fluids from the deep subsurface. These structures are mainly found in active tectonic zones, such as the area near the Los Bajos Fault in Trinidad. Here we report a chemical and microbiological characterization of three mud volcanoes, which included analyses of multiple liquid and solid samples from the mud volcanoes. Our study confirms previous suggestions that at least some of the mud volcano fluids are a mixture of deeper salt-rich water and surficial/precipitation water. No apparent water quality differences were found between sampling sites north and south of a major geological fault line. Microbiological analyses revealed diverse communities, both aerobic and anaerobic, including sulfate reducers, methanogens, carbon dioxide fixing and denitrifying bacteria. Several identified species were halophilic and likely derived from the deeper salt-rich subsurface water, while we also cultivated pathogenic species from the Vibrionaceae, Enterobacteriaceae, Shewanellaceae, and Clostridiaceae. These microorganisms were likely introduced into the mud volcano fluids both from surface water or shallow ground-water, and perhaps to a more minor degree by rain water. The identified pathogens are a major health concern that needs to be addressed. KW - Water stable isotope analysis KW - Mud volcanoe fluids KW - Metabolomics PY - 2020 DO - https://doi.org/10.1016/j.scitotenv.2019.136087 VL - 707 SP - 136087 PB - Elsevier B.V. AN - OPUS4-50499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schulz, Anne-Christine A1 - Schreiber, Frank T1 - Co-selection for biocide and antibiotic resistance in microbial wastewater communities N2 - Biocides are used for a wide range of purposes, including disinfectants or preservatives. They play a major role in the prevention of microbial infections in healthcare and animal husbandry. The use of biocides often leads to the discharge of active biocidal substances into wastewater streams, causing the exposure of wastewater microbial communities to subinhibitory concentrations. In turn, it is known that wastewater treatment plants (WWTP) are hotspots for antibiotic resistant bacteria. Since similar mechanisms confer resistance to biocides and antibiotics, exposure to biocides can result in co-selection of antibiotic resistant bacteria in WWTP Here, we want to investigate co-selection processes of antibiotic resistance in natural WWTP microbial communities upon biocide exposure. Microbial communities were sampled at the WWTP Ruhleben in Berlin and characterized regarding their susceptibility against different clinically relevant antibiotics. To investigate the link between biocide exposure and antibiotic resistance, changes in the susceptibility level after exposure to environmentally relevant concentrations of the commonly used biocide didecyldimethylammonium chloride (DDAC) will be determined by enumerating resistant and non-resistant E. coli on selective plates with and without antibiotics and DDAC. In case of antibiotics, clinical breakpoint concentrations according to EUCAST will be used to discriminate between susceptible and resistant strains. In case of DDAC (and biocides in general), clinical breakpoints do not exist. Therefore, we determined a cut-off concentration at which the majority of naturally-occurring E. coli strains cannot grow anymore based on (I) the MIC (minimal inhibitory concentration) distribution, and (II) by plating wastewater communities onto selective indicator agar plates loaded with increasing DDAC concentration. Additionally, antibiotic cross-resistance will be determined by spotting single colonies, isolated from DDAC-selective plates onto antibiotic plates. The results of our experiments will help to determine selective concentrations and to estimate the risk of antibiotic co-selection and cross-resistance in microbial WWTP communities upon biocide exposure. T2 - Annual Conference 2023 of the Association for General and Applied Microbiology CY - Göttingen, Germany DA - 10.09.2023 KW - Antibiotic resisitance KW - Biocide KW - Wastewater KW - Risk assesment PY - 2023 AN - OPUS4-58510 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schulz, Anne-Christine A1 - Schreiber, Frank T1 - Assessing co-selection of biocide and antibiotic resistance in wastewater microbial communities N2 - Biocides are used for a wide range of purposes, including disinfectants or preservatives. Biocides play a major role in the prevention of microbial infections in healthcare and animal husbandry. The use of biocides often leads to the discharge of active biocidal substances into wastewater streams, causing the exposure of wastewater microbial communities to subinhibitory concentrations. In turn, it is known that wastewater treatment plants (WWTP) are hotspots for antibiotic resistant bacteria. Since similar mechanisms confer resistance to biocides and antibiotics, exposure to biocides can result in co-selection of antibiotic resistant bacteria in WWTP due to biocides. Here, we investigate the magnitude and the drivers of co-selection of antibiotic resistance in natural wastewater microbial communities upon biocide exposure. Microbial communities will be sampled at the WWTP Ruhleben in Berlin and characterized regarding their biocide and antibiotic resistance. Changes in the resistance level after exposure to different biocides will be determined by enumerating resistant and non-resistant E. coli and heterotrophic bacteria on selective plates with and without several biocides and antibiotics. Moreover, we are establishing a synthetic community comprising about 100 environmental E. coli isolates each with different antimicrobial resistance traits. Each isolate will be tagged with a unique DNA-barcode. All isolates will be pooled and exposed to different biocides at various concentrations. The barcode labeling enables us to determine the abundance of each isolate at the beginning and end of the experiment by transposon-tag sequencing. The project results will inform risk assessment of the effects of biocidal residues on antimicrobial resistance selection in WWTP. The project is part of the BIOCIDE consortium funded within the call on Aquatic pollutants by JPI-AMR, JPI-OCEANS and JPI-WATER. T2 - 6th International Symposium onn the Environmental Dimension of Antibiotic Resistance - EDAR 6 CY - Gothenburg, Sweden DA - 22.09.2022 KW - Antibiotic resisitance KW - Biocide KW - Wastewater KW - Risk assesment PY - 2022 AN - OPUS4-56796 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schreiber, Frank A1 - Zimmermann, M. A1 - Escrig, S. A1 - Lavik, G. A1 - Kuypers, M.M.M. A1 - Meibom, A. A1 - Ackermann, M. T1 - Substrate and electron donor limitation induce phenotypic heterogeneity in different metabolic activities in a green sulphur bacterium N2 - Populations of genetically identical cells can display marked variation in phenotypic traits; such variation is termed phenotypic heterogeneity. Here, we investigate the effect of substrate and electron donor limitation on phenotypic heterogeneity in N2 and CO2 fixation in the green sulphur bacterium Chlorobium phaeobacteroides. We grew populations in chemostats and batch cultures and used stable isotope labelling combined with nanometer‐scale secondary ion mass spectrometry (NanoSIMS) to quantify phenotypic heterogeneity. Experiments in H2S (i.e. electron donor) limited chemostats show that varying levels of NH4+ limitation induce heterogeneity in N2 fixation. Comparison of phenotypic heterogeneity between chemostats and batch (unlimited for H2S) populations indicates that electron donor limitation drives heterogeneity in N2 and CO2 fixation. Our results demonstrate that phenotypic heterogeneity in a certain metabolic activity can be driven by different modes of limitation and that heterogeneity can emerge in different metabolic processes upon the same mode of limitation. In conclusion, our data suggest that limitation is a general driver of phenotypic heterogeneity in microbial populations. KW - NanoSIMS KW - Phenotypic heterogeneity PY - 2018 UR - https://onlinelibrary.wiley.com/doi/abs/10.1111/1758-2229.12616 DO - https://doi.org/10.1111/1758-2229.12616 SN - 1758-2229 VL - 10 IS - 2 SP - 179 EP - 183 PB - John Wiley & Sons Ltd AN - OPUS4-44596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank A1 - Nordholt, Niclas A1 - Kanaris, Orestis A1 - Schmidt, Selina T1 - Persistence against benzalkonium chloride promotes rapid evolution of tolerance under periodic disinfection N2 - Biocides used as disinfectants are important to prevent the transmission of pathogens, especially during the current antibiotic resistance crisis. This crisis is exacerbated by phenotypically tolerant persister subpopulations which can survive transient antibiotic treatment and facilitate resistance evolution. Despite the transient nature of disinfection, knowledge concerning persistence to disinfectants and its link to resistance evolution is currently lacking. Here, we show that E. coli displays persistence against a widely used disinfectant benzalkonium chloride (BAC). Periodic, persister-mediated failure of disinfection rapidly selects for BAC tolerance. BAC tolerance is associated with reduced cell surface charge and mutations in the novel tolerance locus lpxM. Moreover, the fitness cost incurred by BAC tolerance turned into a fitness benefit in the presence of antibiotics, suggesting a selective advantage of BAC-tolerant mutants in antibiotic environments. Our findings provide a mechanistic underpinning for the faithful application of disinfectants to prevent multi-drug-resistance evolution and to steward the efficacy of biocides and antibiotics. T2 - New Approaches and Concepts in Microbiology CY - Online meeting DA - 07.07.2021 KW - Persistence KW - Biocides KW - Evolution KW - Cross-resistance KW - Biocide tolerance PY - 2021 AN - OPUS4-53168 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schreiber, Frank A1 - Ackermann, M. T1 - Environmental drivers of metabolic heterogeneity in clonal microbial populations N2 - Microorganisms perform multiple metabolic functions that shape the global cycling of elements, health and disease of their host organisms, and biotechnological processes. The rates, at which different metabolic activities are performed by individual cells, can vary between genetically identical cells within clonal populations. While the molecular mechanisms that result in such metabolic heterogeneity have attracted considerable interest, the environmental conditions that shape heterogeneity and its consequences have received attention only in recent years. Here, we review the environmental drivers that lead to metabolic heterogeneity with a focus on nutrient limitation, temporal fluctuations and spatial structure, and the functional consequences of such heterogeneity. We highlight studies using single-cell methods that allow direct investigation of metabolic heterogeneity and discuss the relevance of metabolic heterogeneity in complex microbial communities. KW - Phenotypic variation KW - NanoSIMS KW - Diversity KW - Metabolism PY - 2019 UR - https://www.sciencedirect.com/science/article/abs/pii/S095816691930134X?via%3Dihub DO - https://doi.org/10.1016/j.copbio.2019.11.018 VL - 62 SP - 202 EP - 211 PB - Elsevier Ltd. AN - OPUS4-50194 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -