TY - JOUR A1 - Scholz, Philipp A1 - Vogel, Christian A1 - Schuck, G. A1 - Simon, Franz-Georg T1 - Speciation of copper and zinc compounds relevant for the hazard property (HP) 14 classification of municipal solid waste incineration bottom and fly ashes N2 - The analysis of the presence and content of substances that are toxic to aquatic life in waste is essential for classification of waste with regard to hazard property (HP) 14 ‘ecotoxic’. For the determination of HP14 classified copper (Cu) and zinc (Zn) compounds in various municipal solid waste incineration bottom ashes (IBA) and one fly ash (FA) from Germany we applied X-ray absorption near-edge structure (XANES) spectroscopy in combination with linear combination fitting. The analysis showed that approx. 50–70% of Cu in the IBA are Cu(I) compounds and elemental Cu(0), but these compounds were not equally distributed in the different IBA. In contrast, the majority (approx. 50–70%) of Zn in all IBA is elemental zinc, which originates from brass or other alloys and galvanized metals with a large content of zinc in the waste. The FA contain higher mass fraction on Zn and other toxic elements, but similar Cu and Zn species. Additional performed selective extraction at a pH of 4 with an organic acid of some IBA showed that the ecotoxic Zn fraction is mainly elemental zinc and zinc oxide. In contrast, for the ecotoxic Cu fraction within the IBA no specific compound could be identified. Furthermore, the XANES analysis showed that the HP14 properties of especially Cu in IBA is overestimated with current best-practice guidelines for sample processing for the current substance-related approach with the 0.1% cut-off rule for each substance. However, it should be considered whether it would not be better from an environmental point of view to take the ecotoxicologically leachable copper and zinc as a reference value. KW - Thermal waste treatment KW - XANES spectroscopy KW - Ecotoxicity KW - Incineration bottom ash PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-609584 DO - https://doi.org/10.1016/j.wasman.2024.09.001 VL - 189 SP - 421 EP - 426 PB - Elsevier Ltd. AN - OPUS4-60958 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kittner, Maria T1 - Contaminant Emissions from Artificial Turf Sports Pitches - Simultaneous sampling for Microplastics, PAH and Heavy Metals N2 - In September 2023, the European Commission introduced a new regulation to reduce microplastic (MP) emissions into the environment, including the sale and use of intentionally added (large) MP < 5 mm (ISO/TR 21960: 2020). This explicitly applies to the use of synthetic rubber granulate infill in artificial turf installations, which are complex multi-component systems consisting of multiple synthetic polymers (Fig. 1). In addition, abrasions of synthetic grass fibres and other turf components are also considered as MP sources. Although this has a major impact on public recreational sports, there is so far no sufficient data to estimate the MP emissions from artificial turf sports pitches into the environment and thus their relevance as a source of MP pollution. To close this gap, this study compared environmental contaminant emissions of three artificial turf scenarios at different ageing states (unaged, artificially and real-time aged): the past (old turf: fossil based, synthetic infill), present (most commonly installed in Germany: fossil based, EPDM infill) and future (turf with recycled grass fibres, no synthetic infill). Accelerated ageing by UV weathering and mechanical stress was carried out to simulate the outdoor weathering during the lifespan of approx. 15 years. MP emissions and released environmentally relevant contaminants posing a risk to the groundwater were simultaneously sampled using the newly developed Microplastic Eluate Lysimeter manufactured at BAM (Fig. 2). MP contents were analysed using smart microfilter crucibles (mesh size: 5 μm) with subsequent MP detection by TED-GC/MS. Additionally, concentrations of polycyclic aromatic hydrocarbons were determined using GC/MS and heavy metals using ICP-AES. T2 - 22nd European Symposium on Polymer Spectroscopy (ESOPS) CY - Berlin, Germany DA - 08.09.2024 KW - Microplastics Eluate Lysimeter KW - Microplastics KW - TED-GC/MS KW - Heavy Metals KW - PAH PY - 2024 AN - OPUS4-61013 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -