TY - JOUR A1 - Nordholt, Niclas A1 - O'Hara, Kate A1 - Resch-Genger, Ute A1 - Blaskovich, M. A1 - Rühle, Bastian A1 - Schreiber, Frank T1 - A fluorescently labelled quaternary ammonium compound (NBD-DDA) to study resistance mechanisms in bacteria N2 - Quaternary ammonium compounds (QACs) are widely used as active agents in disinfectants, antiseptics, and preservatives. Despite being in use since the 1940s, there remain multiple open questions regarding their detailed mode-of-action and the mechanisms, including phenotypic heterogeneity, that can make bacteria less susceptible to QACs. To facilitate studies on resistance mechanisms towards QACs, we synthesized a fluorescent quaternary ammonium compound, namely N-dodecyl-N,N-dimethyl-[2-[(4-nitro-2,1,3-benzoxadiazol-7-yl)amino]ethyl]azanium-iodide (NBD-DDA). NBD-DDA is readily detected by flow cytometry and fluorescence microscopy with standard GFP/FITC-settings, making it suitable for molecular and single-cell studies. As a proof-of-concept, NBD-DDA was then used to investigate resistance mechanisms which can be heterogeneous among individual bacterial cells. Our results reveal that the antimicrobial activity of NBD-DDA against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa is comparable to that of benzalkonium chloride (BAC), a widely used QAC, and benzyl-dimethyl-dodecylammonium chloride (BAC12), a mono-constituent BAC with alkyl-chain length of 12 and high structural similarity to NBD-DDA. Characteristic time-kill kinetics and increased tolerance of a BAC tolerant E. coli strain against NBD-DDA suggest that the mode of action of NBD-DDA is similar to that of BAC. As revealed by confocal laser scanning microscopy (CLSM), NBD-DDA is preferentially localized to the cell envelope of E. coli, which is a primary target of BAC and other QACs. Leveraging these findings and NBD-DDA‘s fluorescent properties, we show that reduced cellular accumulation is responsible for the evolved BAC tolerance in the BAC tolerant E. coli strain and that NBD-DDA is subject to efflux mediated by TolC. Overall, NBD-DDA’s antimicrobial activity, its fluorescent properties, and its ease of detection render it a powerful tool to study resistance mechanisms of QACs in bacteria and highlight its potential to gain detailed insights into its mode-of-action. KW - Antimicrobial resistance KW - Bacteria KW - Disinfection KW - Biocides PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563811 DO - https://doi.org/10.3389/fmicb.2022.1023326 SN - 1664-302X IS - 13 SP - 1 EP - 13 PB - Frontiers Media CY - Lausanne AN - OPUS4-56381 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Li, M. A1 - Schlaich, C. A1 - Zhang, J. A1 - Donskyi, Ievgen A1 - Schwibbert, Karin A1 - Schreiber, Frank A1 - Xia, Y. A1 - Radnik, Jörg A1 - Schwerdtle, T. A1 - Haag, R. T1 - Mussel-inspired multifunctional coating for bacterial infection prevention and osteogenic induction N2 - Bacterial infection and osteogenic integration are the two main problems that cause severe complications after surgeries. In this study, the antibacterial and osteogenic properties were simultaneously introduced in biomaterials, where copper nanoparticles (CuNPs) were generated by in situ reductions of Cu ions into a mussel-inspired hyperbranched polyglycerol (MI-hPG) coating via a simple dip-coating method. This hyperbranched polyglycerol with 10 % catechol groups’ modification presents excellent antifouling property, which could effectively reduce bacteria adhesion on the surface. In this work, polycaprolactone (PCL) electrospun fiber membrane was selected as the substrate, which is commonly used in biomedical implants in bone regeneration and cardiovascular stents because of its good biocompatibility and easy post-modification. The as-fabricated CuNPs-incorporated PCL membrane [PCL-(MI-hPG)-CuNPs] was confirmed with effective antibacterial performance via in vitro antibacterial tests against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and multi-resistant E. coli. In addition, the in vitro results demonstrated that osteogenic property of PCL-(MI-hPG)-CuNPs was realized by upregulating the osteoblast-related gene expressions and protein activity. This study shows that antibacterial and osteogenic properties can be balanced in a surface coating by introducing CuNPs. KW - Mussel-inspired coating KW - CuNPs KW - Multi-resistant bacteria KW - Antibacterial KW - Antifouling KW - Osteogenesis PY - 2021 DO - https://doi.org/10.1016/j.jmst.2020.08.011 SN - 1005-0302 VL - 68 SP - 160 EP - 171 PB - Elsevier Ltd. AN - OPUS4-51519 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas T1 - The disinfectant glutaraldehyde induces antibiotic tolerance underpinned by a Disrupted Cellular State and Heterogenous Regrowth Dynamics N2 - Glutaraldehyde is widely used as a disinfectant and preservative, but little is known about its effects on bacterial susceptibility to antibiotics and the selection of tolerant phenotypes. We found that short-term exposure to sub-inhibitory levels of glutaraldehyde makes E. coli resistant to high doses of bactericidal antibiotics from different classes. This tolerance is associated with delayed, heterogeneous regrowth dynamics and global transcriptome remodeling. We identified over 1200 differentially expressed genes, including those related to antibiotic efflux, metabolic processes, and the cell envelope. The cells entered a disrupted state likely due to the unspecific mode-of-action of glutaraldehyde. Despite this unregulated response, we identified several differentially expressed genes not previously associated with antibiotic tolerance or persistence that induce antibiotic tolerance when overexpressed alone. These findings highlight how the unspecific mode-of-action of disinfectants can make bacteria temporarily resistant to antibiotics. They have implications for settings where disinfectants and antibiotics are used in close proximity, such as hospitals and animal husbandry, and for the selection dynamics of tolerant pheno- and genotypes in fluctuating environments where microorganisms are exposed to these substances, such as sewage systems. A trade-off arises from overcoming the disrupted state as quickly as possible and maintaining antibiotic tolerance. T2 - Molecular Mechanisms in Evolution (GRS) Gordon Research Seminar CY - Easton, Massachusetts, USA DA - 24.06.2023 KW - Glutaraldehyde KW - Biocides KW - Tolerance KW - Bacteria KW - Disinfection KW - Heterogeneity KW - Antibiotics KW - AMR PY - 2023 AN - OPUS4-58032 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank A1 - Nordholt, Niclas A1 - Kanaris, Orestis A1 - Schmidt, Selina A1 - Lewerenz, Dominique T1 - Phenotypic and evolutionary responses of bacteria to disinfection N2 - Disinfectants are important to prevent the transmission of pathogens, especially in the face of the current antibiotic resistance crisis. The crisis is further exacerbated by phenotypically tolerant persister subpopulations that can survive transient antibiotic treatment and facilitate resistance evolution. Despite the transient nature of disinfectant application, persistence to disinfectants and its role for the evolution of tolerance and cross-resistance to antibiotics has not been studied. Our work shows that E. coli displays persistence against several widely used disinfectants, including benzalkonium chloride (BAC), didecyldimethylammoniumchlorid (DDAC) and isopropanol. The molecular mechanism of BAC persistence is triggered in stationary phase and affected by several antibiotic persister genes (hipA, tisB, tolC, relA, spoT). Experimental evolution and population dynamic modeling show that repeated failure of disinfection due to persisters rapidly selects for BAC tolerance underpinned by reduced cell surface charge due to mutations in genes related to lipid A acylation (lpxML). Furthermore, evolved BAC tolerance affects the susceptibility to antibiotics, leading to positive selection of disinfectant tolerant strains at environmentally relevant antibiotic concentrations and variations in evolvability of antibiotic resistance due to epistatic effects. These results highlight the need for faithful application of disinfectants to steward their efficacy and the efficacy of antibiotics. A better understanding of the bacterial response to disinfectants is crucial to understand and avert the ongoing antimicrobial resistance crisis. T2 - Gordon Research Conference - Molecular mechanisms of evolution CY - Easton, MA, United States DA - 25.06.2023 KW - Antimicrobial resistance KW - Bacteria KW - Disinfection KW - Biocides PY - 2023 AN - OPUS4-57861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas A1 - Lewerenz, Dominique A1 - Schmidt, Selina A1 - Schreiber, Frank T1 - Heterogeneity in the bacterial response to disinfection and its impact on antibiotic tolerance and resistance N2 - The global rise of antibiotic resistance has made the proper use of disinfectants more important than ever. Their application in clinical l settings is an integral part of antibiotics stewardship by preventing the occurrence and spread of infections. However, improper use of disinfectants also harbours the risk for the evolution of tolerance and resistance to disinfectants, but also to antibiotics. It is therefore crucial to understand whether and how bacteria can survive chemical disinfection and which conditions facilitate the evolution of tolerance and resistance. Here, we study the heterogeneity in the response of isogenic E. coli populations exposed to different levels of commonly used disinfectants. At concentrations below the minimal inhibitory concentration (MIC), we find that certain disinfectants induce prolonged lag times in individual cells, a phenotype that has been associated with persistence against antibiotics. At concentrations above the MIC, we find heterogeneous killing for a range of the tested substances. Interestingly, for the three cationic surfactants that were tested, we find kill kinetics revealing the presence of a tolerant subpopulation that can withstand disinfection longer than most of the population. We will present results from an ongoing evolution experiment in which we test the potential for evolution of population-wide tolerance and resistance through intermittent exposure to lethal doses of a cationic surfactant. T2 - New Approaches and Concepts in Microbiology CY - Heidelberg, Germany DA - 10.07.2019 KW - Persistence KW - Biocides KW - Resistance KW - heterogeneity KW - Bacteria PY - 2019 AN - OPUS4-48524 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas A1 - Schreiber, Frank T1 - Phenotypic heterogeneity in disinfection: sources and consequences for antimicrobial resistance N2 - A summary of projects here at BAM which investigate the influence of phenotypic heterogeneity on the outcome of disinfection and the influence on antimicrobial resistance. This presentation was given in the Theory Seminar of the Quantitative and Theoretical Biology group of Prof. Oliver Ebenhöh at HHU Düsseldorf T2 - Theory Seminar in the Quantitative and Theoretical Biology group at HHU Düsseldorf CY - Düsseldorf, Germany DA - 24.02.2022 KW - Disinfection KW - Biocides KW - Heterogeneity KW - Resistance PY - 2022 AN - OPUS4-54442 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas A1 - Broska, Selina A1 - Schreiber, Frank T1 - Persistence as a microbial survival strategy against disinfectants N2 - Antimicrobial resistance is a major threat to human health. The prevalence of multi-drug resistant (MDR) bacteria is predicted to increase in the future requiring robust control strategies. One cornerstone to prevent the spread of MDR bacteria in clinical settings is the application of disinfectants to improve hygiene standards. However, bacteria can evolve resistance to disinfectants, which in turn can confer cross-resistance to antibiotics. Additionally, clonal bacterial populations can display phenotypic heterogeneity with respect to the tolerance of antibiotic stress leading to a prolonged survival of a sub-population; this phenomenon is termed persistence. Persistence to antibiotics is an evolvable trait and can serve as a stepping stone for the evolution of genetically encoded resistance. Until now, there is a lack of systematic studies that investigate if bacterial populations establish persister subpopulations that tolerate disinfectant stress longer than the majority of the population. Our results in E. coli indicate that persistence is a bacterial survival strategy against benzalkonium chloride, a widely used disinfectant. In future experiments, we will investigate the evolution of persistence in the face of fluctuating exposure to disinfectants and whether persistence facilitates resistance against disinfectants. Lastly, we will test how tolerance and resistance against disinfectants affects susceptibility against antibiotics. T2 - Bridging Ecology and Molecular Biology: Organismic Responses to Recurring Stress CY - Berlin, Germany DA - 09.04.2018 KW - Bacteria KW - Persistence KW - Resistance KW - Biocides PY - 2018 AN - OPUS4-44667 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nordholt, Niclas A1 - Kanaris, Orestis A1 - Schmidt, Selina A1 - Schreiber, Frank T1 - Persistence against benzalkonium chloride promotes rapid evolution of tolerance during periodic disinfection N2 - Biocides used as disinfectants are important to prevent the transmission of pathogens, especially during the current antibiotic resistance crisis. This crisis is exacerbated by phenotypically tolerant persister subpopulations that can survive transient antibiotic Treatment and facilitate resistance evolution. Here, we show that E. coli displays persistence against a widely used disinfectant, benzalkonium chloride (BAC). Periodic, persister-mediated failure of disinfection rapidly selects for BAC tolerance, which is associated with reduced cell Surface charge and mutations in the lpxM locus, encoding an enzyme for lipid A biosynthesis. Moreover, the fitness cost incurred by BAC tolerance turns into a fitness benefit in the presence of antibiotics, suggesting a selective advantage of BAC-tolerant mutants in antibiotic environments. Our findings highlight the links between persistence to disinfectants and resistance evolution to antimicrobials. KW - Persistence KW - Biocides KW - Evolution KW - Cross-resistance KW - Biocide tolerance KW - Disinfection PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538532 DO - https://doi.org/10.1038/s41467-021-27019-8 SN - 2041-1723 VL - 12 IS - 1 SP - 6792 PB - Springer AN - OPUS4-53853 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas A1 - Kanaris, Orestis A1 - Schmidt, Selina B. I. A1 - Schreiber, Frank T1 - Persistence against benzalkonium chloride promotes rapid evolution of tolerance under periodic disinfection N2 - The exposure to antimicrobial substances drives the evolution of antimicrobial resistance (AMR). Biocides are antimicrobials used as disinfectants, antiseptics and preservatives. They find application on a large scale in the industrial and medical sector, but also in private households. In terms of mass, the worldwide use of biocides exceeds that of antibiotics. Thus, despite their important role in preventing the spread of pathogens, due to their ubiquity, biocides are suspected to be drivers of the antimicrobial resistance crisis. In our work we try to understand how biocides contribute to the emergence of AMR, what the underlying adaptation principles and mechanisms are and how they compare to those found for antibiotics. Here, I present results which demonstrate that phenotypic heterogeneity in E. coli, namely the formation of tolerant persister cells, can enable the survival of disinfection and consequentially facilitate the evolution of AMR. Using experimental evolution that selects for tolerance, we find that mutations in lipid A biosynthesis arise following periodic treatment with benzalkonium chloride (BAC), a widely used disinfectant. BAC tolerance is associated with additional, diverse mutations as well as changes in the susceptibility to antibiotics from different classes and changes in motility and biofilm formation, suggesting extensive regulatory re-wiring in the evolved clones. Remarkably, we find that fitness costs (growth rate reduction) incurred by BAC tolerance are alleviated in the presence of antibiotics. These findings demonstrate the complexity underlying the adaptation to antimicrobials and highlight the links between persistence to disinfectants and resistance evolution to antimicrobials. T2 - Bacterial Networks (BacNet22) CY - Sant Feliu de Guixols, Spanien DA - 04.09.2022 KW - Persistence KW - Biocides KW - evolution KW - disinfection KW - biocide tolerance PY - 2022 AN - OPUS4-55713 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas A1 - Kanaris, Orestis A1 - Lewerenz, Dominique A1 - Gödt, Annett A1 - Schreiber, Frank T1 - Evolutionary implications of heterogeneous disinfectant tolerance N2 - Introduction: Effective disinfection is crucial to maintain hygiene and to prevent the spread of infections. Phenotypic heterogeneity in disinfection survival (i.e. tolerance) may result in failure of disinfection, which in turn may foster the evolution of resistance to both disinfectants and antibiotics. However, the consequences of phenotypic heterogeneity for disinfection outcome and resistance evolution are not well understood. Goal: This study investigates the impact of phenotypic heterogeneity on the survival and evolution of Escherichia coli during disinfection with six commonly used substances. Furthermore, the consequences of evolved disinfectant tolerance for antibiotic resistance evolution are studied. Materials & Methods: The extent of population heterogeneity during disinfection is derived by determining time-kill kinetics and analysis with mathematical modelling. The link between population heterogeneity and evolvability of disinfectant tolerance was assessed by laboratory evolution experiments under periodic disinfection. The ability of disinfectant tolerant strains to evolve antibiotic resistance is assessed by serial transfer experiments with increasing concentrations of different antibiotics and by whole genome sequencing. Results: Multi-modal time-kill kinetics in three of the six disinfectants suggest the presence of disinfectant-tolerant subpopulations (i.e. persister cells). Importantly, the ability and extent to evolve population-wide tolerance under periodic disinfection is related with the presence of persister cells and the level of phenotypic heterogeneity during disinfection. Interestingly, the probability of high-level resistance evolution to certain antibiotics is attenuated in disinfectant tolerant strains as compared to the sensitive ancestor. Whole-genome sequencing reveals epistatic interactions between disinfectant tolerance and antibiotic resistance mutations, preventing access to canonical evolutionary paths to resistance. Summary: Our findings suggest that phenotypic heterogeneity can facilitate disinfection survival and the evolution of population wide tolerance, which can impact future antibiotic resistance evolution. T2 - Vereinigung Allgemeiner und Angewandter Mikrobiobiologie Jahreskongress 2023 CY - Würzburg, Germany DA - 02.06.2024 KW - Biocide KW - Resistance KW - Persistence KW - Evolution KW - Herteogeneous phenotypes PY - 2024 AN - OPUS4-60244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -