TY - CONF A1 - Wilke, Olaf T1 - Emission Testing for Indoor Products N2 - The chemical emissions from products are tested by means of emission test chambers under defined conditions (climate, loading, air change rate). The standard method for the determination of volatile organic compounds (VOC) is the sampling onto Tenax-tubes followed by thermal desorption (TDS) and gas chromatography-mass spectrometry (GC-MS) analysis. The EU-LCI list includes some very volatile organic compounds (VVOC) and some VOC for which there are limitations when using the standard method. For VVOC additional sampling is required using stronger absorbers like Carbotrap or multi-bed adsorption tubes. The analysis of VVOC also requires a different GC oven program and a different column for the separation. For the determination of formaldehyde and other low boiling aldehydes (e.g. acetaldehyde, acetone, propanal, propenal) DNPH-cartridges are used which are extracted with acetonitrile followed by liquid chromatography (HPLC-UV) analysis. The derivatisation of propenal and other unsaturated aldehydes (e.g. 2-butenal) with DNPH might lead to lower findings due to incomplete derivatization and forming of by-products. For a better quantification of acetic acid the use of ion chromatography (IC) is recommended because the analysis of acetic acid with the standard method (TDS) leads to lower findings due to break through during sampling. The use of ion chromatography for the analysis of organic acids requires a third sampling technique. The acids are adsorbed onto silica-gel and extracted with water. T2 - ISESISIAQ 2019 CY - Kaunas, Lituania DA - 18.08.2019 KW - Indoor Air Quality KW - Emission Testing KW - Indoor Products KW - VOC Emission KW - Construction Products PY - 2019 AN - OPUS4-49406 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Seeger, Stefan A1 - Hilgenberg, Kai T1 - Measurement of particle emissions in Laser Powder Bed Fusion (L-PBF) processes and its potential for in-situ process monitoring N2 - Laser Powder Bed Fusion (L-PBF) is a promising additive manufacturing (AM) technology for metal part production especially for complex and lightweight structures or functional designs. In L PBF processes several by-products including welding plume and its condensates, spatter and ejected powder are generated during laser exposure. Investigations of micro- and nano-sized by-products have received little attention in literature. This study focuses on the analysis of particle emissions in L PBF of 316L stainless steel using a scattered light aerosol spectrometer and a fast mobility particle sizer spectrometer during the process which allows for in-situ analysis of particle sizes in the range of 6 nm to 100 µm. A distinct correlation of emission signals to part position can be revealed. In addition, a significant influence of laser scanning vector directions on emission signals is presented. Furthermore, differing powder layer thicknesses can be recognised by deviations in emission signals. T2 - Euro PM2019 CY - Maastricht, The Netherlands DA - 13.10.2019 KW - Aerosol measurements KW - Laser Powder Bed Fusion (L-PBF) KW - Additive Manufacturing (AM) KW - Spatter KW - Fume KW - Plume KW - Particle gas emission PY - 2019 AN - OPUS4-49387 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Seeger, Stefan A1 - Hilgenberg, Kai T1 - Measurement of particle emissions in Laser Powder Bed Fusion (L-PBF) processes and its potential for in-situ process monitoring N2 - Laser Powder Bed Fusion (L-PBF) is a promising additive manufacturing (AM) technology for metal part production especially for complex and lightweight structures or functional designs. In L PBF processes several by-products including welding plume and its condensates, spatter and ejected powder are generated during laser exposure. Investigations of micro- and nano-sized by-products have received little attention in literature. This study focuses on the analysis of particle emissions in L PBF of 316L stainless steel using a scattered light aerosol spectrometer and a fast mobility particle sizer spectrometer during the process which allows for in-situ analysis of particle sizes in the range of 6 nm to 100 µm. A distinct correlation of emission signals to part position can be revealed. In addition, a significant influence of laser scanning vector directions on emission signals is presented. Furthermore, differing powder layer thicknesses can be recognised by deviations in emission signals. T2 - Euro PM 2019 CY - Maastricht, The Netherlands DA - 13.10.2019 KW - Plume KW - Laser Powder Bed Fusion (L-PBF) KW - Additive Manufacturing (AM) KW - Spatter KW - Fume KW - Particle gas emission KW - Aerosol measurements PY - 2019 SP - 1 EP - 7 AN - OPUS4-49388 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hoffmann, Marie A1 - Vogel, Christian A1 - Adam, Christian A1 - Stephan-Scherb, Christiane A1 - Hecht, Lutz T1 - Novel approaches to Sc species investigation in bauxite residues by x ray absorption near edge structure spectroscopy N2 - In a rapidly evolving world, the demand on raw materials is increasing steadily and many technologies are dependent on a secure supply of hi-tech metals. Recently, scandium (Sc) has attracted attention since its use in high strength Al-alloys and solid-oxide-fuel-cells strongly improves the performance of those materials. The element Sc is not exceptionally rare but quite resistant to geochemical enrichment processes, it is scarcely found enriched to high concentrations and is recovered as a by-product. Since Sc enrichment in Greek bauxite residues was shown by Ochsenkühn-Petropoulou et. al (1994), intensive research on this material and development of efficient Sc-recovery methods is ongoing. This study investigates Sc-bearing species in bauxite residues from alumina production. It aims to provide direct evidence about the Sc-speciation’s in those secondary resources and tries to find the link to speciation’s in primary resources, e.g. bauxites and laterites. Therefore, Sc K edge XANES (X-ray absorption near edge structure) spectroscopy is performed using synchrotron radiation to determine the presence of certain Sc-components and distinguish between adsorbed and chemically bonded Sc as was shown for lateritic deposits in Australia by Chassé et al. 2016. For comparison, reference standards of Sc-bearing and Sc-adsorbed species are synthesized. Indirect inferences from leaching behavior of bauxites, in cases supported by analyses with LA-ICP-MS, suggest Sc to be associated with either iron- or aluminum phases (Vind et al. 2017); (Suss et al.). It remains unclear how different primary materials influence Sc-speciation in the bauxite residue. Therefore, a comparison between different European bauxite residues is made in this study. The investigations should help to understand Sc chemistry and behavior in different primary and secondary materials and provide fundamentals for metallurgical processing. The research is incorporated in the SCALE project (GA No. 730105) funded by EU Horizon 2020 research and innovation program. T2 - DMG Tagung GeoMünster CY - Westfälische Wilhelms-Universität Münster, Germany DA - 22.09.2019 KW - Scandium KW - Bauxite Residue KW - Red Mud KW - XANES PY - 2019 AN - OPUS4-49389 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Simon, Franz-Georg A1 - Meggyes, Tamas ED - Meyers, Robert A. T1 - Sustainable remediation methods for metals and radionuclides N2 - Since it was realized that sites contaminated with metals and radionuclides needed treatment, various remediation methods have been and are being developed. Depending on the size of the contaminated site and urgency of intervention, conventional or recently introduced techniques have been used. Conventional techniques include excavation and removal for treatment of soil and contaminants, or the so-called “pump-and-treat” method, in which contaminated groundwater is removed from the ground by pumping and treated in a treatment plant on the surface. It has the advantage of using proven techniques and is easy to control, and the treated groundwater can be reinjected into the ground or discharged in rivers or lakes. Novel methods include permeable reactive barriers, biomineralization, and electrokinetic remediation. KW - Permeable reactive barriers KW - Groundwater KW - Uranium PY - 2019 SN - 978-1-4939-2493-6 DO - https://doi.org/10.1007/978-1-4939-2493-6_63-3 SP - 1 EP - 37 PB - Springer Science+Business Media, LLC CY - Heidelberg ET - 1 AN - OPUS4-48816 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pokharel, R. A1 - Gerrits, Ruben A1 - Schuessler, J. A1 - von Blanckenburg, F. T1 - Mechanisms of olivine dissolution by rock-inhabiting fungi explored using magnesium stable isotopes N2 - To unravel the dissolution mechanisms of olivine by a rock-inhabiting fungus we determined the stable isotope ratios of Mg on solutions released in a laboratory experiment. We found that in the presence of the fungus Knufia petricola the olivine dissolution rates were about seven-fold higher (1.04×10−15 mol cm−2 s−1) than those in the abiotic experiments (1.43×10−16 mol cm−2 s−1) conducted under the same experimental condition (pH 6, 25 °C, 94 days). Measured element concentrations and Mg isotope ratios in the supernatant solutions in both the biotic and the abiotic experiment followed a dissolution trend in the initial phase of the experiment, characterized by non-stoichiometric release of Mg and Si and preferential release of 24Mg over 26Mg. In a later phase, the data indicates stoichiometric release of Mg and Si, as well as isotopically congruent Mg release. We Attribute the initial non-stoichiometric phase to the rapid replacement of Mg2+ in the olivine with H+ along with simultaneous polymerization of Si tetrahedra, resulting in high dissolution rates, and the stoichiometric phase to be influenced by the accumulation of a Si-rich amorphous layer that slowed olivine dissolution. We attribute the accelerated dissolution of olivine during the biotic experiment to physical attachment of K. petricola to the Si-richamorphous layer of olivine which potentially results in ist direct exposure to protons released by the fungal cells. These additional protons can diffuse through the Si-rich amorphous layer into the crystalline olivine. Our results also indicate the ability of K. petricola to dissolve Fe precipitates in the Si-rich amorphous layer either by protonation, or by Fe(III) chelation with siderophores. Such dissolution of Fe precipitates increases the porosity of the Si-rich amorphous layer and hence enhances olivine dissolution. The acceleration of mineral dissolution in the presence of a rock-dissolving fungus further suggests that its presence in surficial CO2 sequestration plants may aid to accelerate CO2 binding. KW - Olivine KW - Magnesium KW - Isotopes KW - Fungus PY - 2019 DO - https://doi.org/10.1016/j.chemgeo.2019.07.001 SN - 0009-2541 SN - 1872-6836 VL - 525 SP - 18 EP - 27 PB - Elsevier AN - OPUS4-48824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Torge, Manfred ED - Brion, I. ED - Alloteau, F. ED - Lehuede, P. ED - Majerus, O. ED - Caurant, D. T1 - The effect of particle deposition and climate on glass degradation N2 - Medieval stained-glass windows are protected by an outside gazing system in many churches.The interspace between the original and the protective glass is ventilated with air from the indoor or exterior environment, where dust and particles can move.Cascade impactor measurements and SEM/EDX analyses of sampled dust were carried to determine the dust composition. The effect of particles on model glass samples was investigated in climate chambers under accelerated weathering conditions. The results from in situ measurements and laboratory tests were combined to evaluate the potential effect of particulate matter on historic stained-glass Windows. T2 - International Symposium on Glass Degradation in Atmospheric Conditions CY - Paris, France DA - 15.11.2017 KW - Medieval-stained glass KW - Protective glazing KW - Cascade impector KW - Simulation PY - 2019 SN - 9782705697945 SP - 223 EP - 224 PB - hermann CY - Paris AN - OPUS4-49023 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Borzekowski, Antje A1 - Anggriawan, R. A1 - Auliyati, M. A1 - Kunte, Hans-Jörg A1 - Koch, Matthias A1 - Rohn, S. A1 - Karlovsky, P. A1 - Maul, Ronald T1 - Formation of Zearalenone Metabolites in Tempeh Fermentation N2 - Tempeh is a common food in Indonesia, produced by fungal fermentation of soybeans using Rhizopus sp., as well as Aspergillus oryzae, for inoculation. Analogously, for economic reasons, mixtures of maize and soybeans are used for the production of so-called tempeh-like products. For maize, a contamination with the mycoestrogen zearalenone (ZEN) has been frequently reported. ZEN is a mycotoxin which is known to be metabolized by Rhizopus and Aspergillus species. Consequently, this study focused on the ZEN transformation during tempeh fermentation. Five fungal strains of the genera Rhizopus and Aspergillus, isolated from fresh Indonesian tempeh and authentic Indonesian inocula, were utilized for tempeh manufacturing from a maize/soybean mixture (30:70) at laboratory-scale. Furthermore, comparable tempeh-like products obtained from Indonesian markets were analyzed. Results from the HPLC-MS/MS analyses show that ZEN is intensely transformed into its metabolites alpha-zearalenol (alpha-ZEL), ZEN-14-sulfate, alpha-ZEL-sulfate, ZEN-14-glucoside, and ZEN-16-glucoside in tempeh production. alpha-ZEL, being significantly more toxic than ZEN, was the main metabolite in most of the Rhizopus incubations, while in Aspergillus oryzae fermentations ZEN-14-sulfate was predominantly formed. Additionally, two of the 14 authentic samples were contaminated with ZEN, alpha-ZEL and ZEN-14-sulfate, and in two further samples, ZEN and alpha-ZEL, were determined. Consequently, tempeh fermentation of ZEN-contaminated maize/soybean mixture may lead to toxification of the food item by formation of the reductive ZEN metabolite, alpha-ZEL, under model as well as authentic conditions. KW - Modified mycotoxins KW - Zearalenone sulfate KW - a-zearalenol KW - Food fermentation KW - Rhizopus and Aspergillus oryzae PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-491126 DO - https://doi.org/10.3390/molecules24152697 VL - 24 IS - 15 SP - 2697 PB - MDPI AN - OPUS4-49112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nöller, Renate A1 - Feldmann, Ines A1 - Kasztovszky, Z. A1 - Szőkefalvi-Nagy, Z. A1 - Kovács, I. T1 - Characteristic Features of Lapis Lazuli from Different Provenances, Revised by µXRF, ESEM, PGAA and PIXE N2 - The objective of this study is to find out, to what extent the geochemical characteristics of lapis lazuli can be utilized in respect to its provenance. A wide range of variables is taken into consideration depending on the quantity of samples analysed from a specific geological region and the methods applied. In order to provide evidence, a multi-technique analytical approach using µXRF, ESEM, PGAA and PIXE is applied to samples from the most famous deposits of lapis lazuli. Special elements determined as fingerprints are compared in relation to the forming conditions obvious in textural features. The results and statistical output allow a differentiation that enables an optimized local classification of the blue stone. An absolute requirement for all geo-tracing performed on blue colored cultural objects of unknown provenance is awareness of the limits of analysis. The possible sources of lapis lazuli are tested by analysing the blue pigment used as paint on murals and ink on manuscripts from the Silk Road. KW - Lapis lazuli KW - Micro-XRF KW - ESEM KW - PGAA KW - PIXE KW - Pigment analyses KW - Provenance studies PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-491181 DO - https://doi.org/10.17265/2328-2193/2019.02.003 SN - 2328-2193 VL - 7 IS - 2 SP - 57 EP - 69 PB - David CY - New York, NY AN - OPUS4-49118 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schraut, Katharina A1 - Adamczyk, Burkart A1 - Simon, Sebastian A1 - von Werder, Julia A1 - Meng, Birgit A1 - Stephan, D. A1 - Kargl, F. A1 - Adam, Christian T1 - Formation and chemical stabilisation of tricalcium-silicate during solidification from the melt of post-treated metallurgical slags N2 - Tricalcium-silicate (C3S) or Alite is the most important mineral in Portland cement. Since pure tricalcium-silicate is only stable above temperatures of 1250 °C, its decomposition has to be prevented technically by fast cooling after the sintering process. At room temperature, the decomposition velocity is very slow so that metastable tricalcium-silicate is obtained. Although the mechanisms of clinker phase formation during burning process of Portland cement in a rotary kiln were solved and improved over the years, in view of possible economic and ecological benefits current projects aim to produce clinker phases from metallurgical slags. Recent studies discovered that the mineral phase which remained after a reducing treatment and separation of formed metallic iron from molten Linz-Donawitz (LD-) slags contained about 60 wt.% Alite despite it was cooled slowly. Because the results could be verified using slags from different origins and varying cooling velocities a chemical stabilisation of the Alite can be assumed. First tests in mortars indicate that workability, hardening and solid state properties are comparable with an ordinary Portland cement. An application of the observed phenomenon in cement production requires enhanced knowledge about formation and stabilisation conditions of Alite during crystallisation from melts in contrast to the sintering reactions in conventional Portland cement production. Therefore, this study focuses on the stabilisation mechanisms of Alite in consolidating melts. Samples from different melting experiments are analysed to determine stabilising factors. T2 - 15th International Congress on the Chemistry of Cement CY - Prag, Czech Republic DA - 16.09.2019 KW - Tricalcium-silicate KW - Portland Cement KW - Alite KW - Steelmaking slag PY - 2019 SP - Paper 492, 1 EP - 10 AN - OPUS4-49050 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank A1 - Nordholt, Niclas A1 - Schmidt, Selina A1 - Lewerenz, Dominique T1 - Persistence as a microbial survival strategy against biocides and its link to antibiotic resistance evolution N2 - Background: One cornerstone to prevent the spread of antibiotic resistant bacteria in clinical settings is the application of disinfectants. However, bacteria can evolve resistance to disinfectants, which in turn can confer cross-resistance to antibiotics. Additionally, clonal bacterial populations can display phenotypic heterogeneity with respect to the tolerance of antibiotic stress leading to a prolonged survival of a sub-population; this phenomenon is termed persistence. Persistence to antibiotics is an evolvable trait and can serve as a stepping stone for the evolution of genetically encoded resistance. Until now, there is a lack of systematic studies that investigate if bacterial populations establish persister subpopulations that tolerate disinfectant stress longer than most of the population. Objectives: Our objective is to investigate if persistence is a bacterial survival strategy against disinfectants. Furthermore, we investigate the mechanisms of disinfectant persistence and if persistence can evolve in the face of fluctuating exposure to disinfectants. Lastly, we test if the evolved mechanisms of disinfectant tolerance lead to disinfectant resistance and if they confer cross-tolerance and cross-resistance against antibiotics. Methods: We use time-kill assays in the presence of disinfectants and experimental evolution combined to whole-genome sequencing in the model organism E. coli. Results: We find persister sub-populations against chlorhexidine and quaternary ammonium compounds, but not to alcohols, aldehydes and oxidative compounds. We will present the relationship of mechanisms known to underlie antibiotic persister formation to the formation of persisters against disinfectants. In addition, we will present data from an ongoing evolution experiment for persistence against disinfectants. T2 - 8th Congress of European Microbiologists - FEMS 2019 CY - Glasgow, UK DA - 07.11.2019 KW - Antimicrobial resistance KW - Biocides KW - Persister cells PY - 2019 AN - OPUS4-49081 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank A1 - Nordholt, Niclas A1 - Schmidt, Selina A1 - Lewerenz, Dominique T1 - Persistence as a microbial survival strategy against biocides and its link to antibiotic resistance evolution N2 - Question: One cornerstone to prevent the spread of bacteria in clinical and industrial settings is the application of biocides including disinfectants and preservatives. However, bacteria can evolve resistance to biocides, which in turn can confer cross-resistance to antibiotics. Additionally, clonal bacterial populations can display phenotypic heterogeneity with respect to the tolerance of antibiotic stress leading to a prolonged survival of a sub-population; this phenomenon is termed persistence. Persistence to antibiotics is an evolvable trait and can serve as a stepping stone for the evolution of genetically encoded resistance. Until now, there is a lack of systematic studies that investigate if bacterial populations establish persister subpopulations that tolerate disinfectant stress longer than most of the population. Our objective is to investigate if persistence is a bacterial survival strategy against biocides. Furthermore, we investigate the mechanisms of biocide persistence and if persistence can evolve in the face of fluctuating exposure to biocides. Lastly, we test if the evolved mechanisms of biocide tolerance lead to biocide resistance and if they confer cross-tolerance and cross-resistance against antibiotics. Methods: We use time-kill assays in the presence of biocides and experimental evolution combined to whole-genome sequencing in the model organism E. coli. Results: We find persister sub-populations against chlorhexidine and quaternary ammonium compounds, but not to alcohols, aldehydes and oxidative compounds. We will present the relationship of mechanisms known to underlie antibiotic persister formation to the formation of persisters against biocides. In addition, we will present data from an ongoing evolution experiment for persistence against biocides. Conclusion There is a link between antibiotic and biocide persistence with possible implications for antibiotic resistance evolution and spread. T2 - 5th International Symposium on the Environmental Dimension of Antibiotic Resistance - EDAR 2019 CY - Hong Kong, China DA - 09.06.2019 KW - Antimicrobial resistance KW - Biocides KW - Persister cells PY - 2019 AN - OPUS4-49083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Single-cell trait-based biodiversity in microbial communities and its link to ecosystem functioning in a stratified lake N2 - A fundamental question in ecology is how biodiversity affects ecosystem function. Biodiversity is commonly estimated based on genetic variation. We investigated a new approach that defines and measures biodiversity in complex microbial communities. We used the variation in multiple functionally-relevant, phenotypic traits measured in parallel in single cells as a metric for microbial phenotypic diversity. We studied phenotypic diversity and ecosystem functioning throughout different photosynthetic layers dominated by divergent microbial communities in the gradient of Lago di Cadagno. We determined genetic diversity by 16S and 18S amplicon sequencing and bulk ecosystem functioning (photosynthesis). In addition, we determined phenotypic diversity using single-cell technologies such as nanometer-scale secondary ion mass spectrometry (NanoSIMS) correlated with confocal laser scanning microscopy (CLSM) and scanning flow-cytometry. We measured functional trait variation between individuals in 13CO2 fixation, 15NH4+ uptake, and variation in physio-morphological cell traits, such as cell size, shape, and auto-fluorescence for various pigments related to photosynthesis. We used the distances between individuals in a multidimensional trait space to derive phenotypic trait-based diversity indices, such as trait richness, trait evenness, and trait divergence. We find that phenotypic trait divergence associates with ecosystem functioning, whereas genetic diversity does not. Including activity-based, single-cell phenotypic measurements with NanoSIMS provided an additional accuracy to the trait-based diversity assessment and allowed us to formulate hypotheses on the mechanisms that shape the correlation between phenotypic diversity and eco-system function. Together, our results show that phenotypic diversity is a meaningful concept to measure microbial biodiversity and associate it with ecosystem functioning. T2 - 8th Congress of European Microbiologists - FEMS 2019 CY - Glasgow, UK DA - 07.11.2019 KW - NanoSIMS KW - Biodiversity PY - 2019 AN - OPUS4-49077 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Single-cell trait-based biodiversity in microbial communities and its link to ecosystem functioning in a stratified lake N2 - A fundamental question in ecology is how biodiversity affects ecosystem function. Biodiversity is commonly estimated based on genetic variation. We investigated a new approach that defines and measures biodiversity in complex microbial communities. We used the variation in multiple functionally-relevant, phenotypic traits measured in parallel in single cells as a metric for microbial phenotypic diversity. We studied phenotypic diversity and ecosystem functioning throughout different photosynthetic layers dominated by divergent microbial communities in the gradient of Lago di Cadagno. We determined genetic diversity by 16S and 18S amplicon sequencing and bulk ecosystem functioning (photosynthesis). In addition, we determined phenotypic diversity using single-cell technologies such as nanometer-scale secondary ion mass spectrometry (NanoSIMS) correlated with confocal laser scanning microscopy (CLSM) and scanning flow-cytometry. We measured functional trait variation between individuals in 13CO2 fixation, 15NH4+ uptake, and variation in physio-morphological cell traits, such as cell size, shape, and auto-fluorescence for various pigments related to photosynthesis. We used the distances between individuals in a multidimensional trait space to derive phenotypic trait-based diversity indices, such as trait richness, trait evenness, and trait divergence. We find that phenotypic trait divergence associates with ecosystem functioning, whereas genetic diversity does not. Including activity-based, single-cell phenotypic measurements with NanoSIMS provided an additional accuracy to the trait-based diversity assessment and allowed us to formulate hypotheses on the mechanisms that shape the correlation between phenotypic diversity and eco-system function. Together, our results show that phenotypic diversity is a meaningful concept to measure microbial biodiversity and associate it with ecosystem functioning. T2 - 8th Congress of European Microbiologists - FEMS 2019 CY - Glasgow, UK DA - 07.11.2019 KW - NanoSIMS KW - Biodiversity PY - 2019 AN - OPUS4-49080 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Huang, L. A1 - Sekine, R. A1 - Doolette, A. A1 - Herzel, Hannes A1 - Kugler, Stefan A1 - Hoffmann, Marie A1 - Lombi, E. A1 - Zuin, L. A1 - Wang, D. A1 - Félix, R. A1 - Adam, Christian T1 - Specification of bioavailable nutrients and pollutants in the environment by combining DGT and spectroscopic techniques N2 - Previous research shows that analytical methods based on Diffusive Gradients in Thin films (DGT) provide very good correlations to the amount of bioavailable nutrients and pollutants in the environmental samples. However, these DGT results do not identify which compound of the specific element has the high bioavailability. Using various spectroscopic techniques (infrared, XANES and NMR spectroscopy) to analyze the dried DGT binding layers after deployment could allow us to determine the specific elements or compounds. Nutrients such as phosphorus and nitrogen are often, together with other elements, present as molecules in the environment. These ions are detectable and distinguishable by infrared and NMR spectroscopy, respectively. In addition, XANES spectroscopy allows for the specification of nutrients and pollutants (e.g. chromium) on the DGT binding layer. Furthermore, microspectroscopic techniques make it also possible to analyze compounds on the DGT binding layer with a lateral resolution down to 5 µm2. Therefore, species of elements and compounds of e.g. a spatial soil segment can be mapped and analyzed, providing valuable insight to understand the dynamics of nutrients and pollutants in the environment. Here we will present the advantages and limitations of this novel combination of techniques. T2 - 6th Conference on Diffusive Gradients in Thin Films CY - Vienna, Austria DA - 17.09.2019 KW - Soil P species KW - DGT KW - Infrared spectroscopy PY - 2019 AN - OPUS4-49057 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Krüger, O. A1 - Hoffmann, Marie A1 - Adam, Christian T1 - Determination of chromium(VI) in phosphorus fertilizers made from recycled materials by DGT N2 - Phosphorus (P) fertilizers from secondary resources became increasingly important in the last years. However, these novel P-fertilizer can also contain toxic pollutants e.g. chromium (Cr) in the hexavalent state (Cr(VI)), which is regulated with low limit values in agricultural products (German fertilizer ordinance limit: 2 mg/kg Cr(VI)). The determination of Cr(VI) in these novel fertilizer matrices can be hampered by redox processes that lead to false results with the standard wet chemical extraction method (German norm DIN EN 15192). Therefore, we analyzed Cr(VI) in various P-fertilizers with the DGT technique. DGT devices equipped with a APA (polyacrylamide) diffusion layer and Cr(VI) selective N-methyl-D-glucamine (NMDG) binding layer were used for the study. After a 24 h conditioning period of the fertilizer at 60% of the water holding capacity (WHC), the fertilizers were brought to 100% WHC, transferred onto the DGT devices and deployed for 24 h at 25°C. The extraction of Cr from the DGT binding layer was carried out with 1 M HNO3 for 24 h. The Cr-concentrations of the extract were determined by means of ICP-MS. We found a good correlation between the standard wet chemical extraction and the DGT method for the whole range of P-fertilizers. However, partly soluble Cr(VI) compounds cannot be detected in full extent by the DGT method that is best suited for mobile Cr(VI). Furthermore, Cr K-edge XANES spectroscopy showed that the Cr(VI)-selective DGT binding layer also adsorbs mobile Cr(III) compounds from acid treatment of phosphates which can therefore cause an overestimation of Cr(VI). The DGT method was very sensitive and in most cases selective for the analysis of Cr(VI) in P-fertilizers made from recycled materials. However, the results of certain types of P-fertilizers containing mobile Cr(III) or partly immobile Cr(VI) show that still some optimization of the method is required to avoid over- or underestimation of Cr(VI). T2 - 6th Conference on Diffusive Gradients in Thin Films CY - Vienna, Austria DA - 17.09.2019 KW - Fertilzer KW - Pollutant KW - Chromium KW - Diffusive gradients in thin films (DGT) KW - XANES spectroscopy PY - 2019 AN - OPUS4-49058 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kratz, S. A1 - Samman, N. A1 - Wilharm, E. A1 - Jabs, K. A1 - Anlauf, R. A1 - Vogel, Christian A1 - Bloem, E. T1 - Development of a standard substrate to facilitate the use of DGT for the assessment of P recycling fertilizers N2 - P recycling fertilizers are gaining increasing importance in our efforts to close nutrient cycles. An unsatisfactory performance of standard chemical extraction methods to assess the fertilizing effects of such products was reported. They demonstrated that DGT extractions of incubated soil/fertilizer mixtures were able to predict the fertilizing effects of the respective products more accurately. Since DGT works with soil/fertilizer mixtures, its interpretation is soil-dependent. Therefore, in order to facilitate its use as a tool to predict fertilizer performance, it needs to be standardized based on a standard substrate. This research aims to develop a standard substrate based on which evaluation categories for the DGT fertilizer extraction can be derived. The substrate composition should allow to vary the most important soil properties determining the plant availability of fertilizer P. It must also be reproducible at any time and any place. Substrate variants with varying proportions of quartz sand, a clay mineral and sphagnum peat were prepared and set to pH-levels 5.5 and 7 by addition of CaCO3. 7 variants were incubated with a set of test fertilizers (2 recycling fertilizers based on sewage sludge ash and 2 conventional mineral fertilizers) for 2 weeks. Substrate/fertilizer mixtures were then extracted with DGT and an ANOVA was performed to test if the DGT extraction was able to depict significant differences between fertilizers and substrate variants. An 8-week pot trial with ryegrass (3 cuts) was set up with the same substrate variants and test fertilizers. P uptake was determined to assess the fertilizing effect and correlated with the results of the DGT extractions. Statistically significant differences were found between DGT results for the various test fertilizers and substrate variants, indicating that DGT is able to differentiate between P solubility of fertilizers in relation to substrate quality. DGT results showed a strong relationship with P uptake, confirming that this method is suitable to predict the fertilizing effect of P fertilizers. Further optimization of substrate composition and tests with a wider variety of crops and fertilizer types are needed, before evaluation categories for DGT values can be derived. T2 - 6th Conference on Diffusive Gradients in Thin Films CY - Vienna, Austria DA - 17.09.2019 KW - Fertilzer KW - Phosphorus KW - Diffusive Gradients in thin films (DGT) PY - 2019 AN - OPUS4-49060 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hilgenberg, Kai A1 - Daum, Werner A1 - Maierhofer, Christiane A1 - Altenburg, Simon A1 - Bruno, Giovanni A1 - Heckel, Thomas A1 - Skrotzki, Birgit A1 - Zerbst, Uwe A1 - Kranzmann, Axel A1 - Bettge, Dirk A1 - Sommer, Konstantin A1 - Seeger, Stefan A1 - Nitsche, Michael A1 - Günster, Jens A1 - Evans, Alexander T1 - Additive manufacturing at the BAM: We focus on Safety N2 - In Germany, the Federal Institute for Materials Research and Testing (BAM) is addressing challenges in the implementation of additive manufacturing on the industrial landscape for safety-critical applications. KW - Process development KW - Additive Manufacturing KW - In-situ Process Monitoring KW - Non-destructive Materials KW - Characterisation KW - Safety KW - Fatigue KW - Environment KW - Standardisation PY - 2019 UR - https://static.asminternational.org/amp/201910/22/ SN - 0882-7958 VL - 177 IS - 7 SP - 22 EP - 26 PB - ASM International CY - Materials Park, OH, USA AN - OPUS4-49780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonnerot, Olivier A1 - Bosch, S. A1 - Rabin, Ira A1 - Hahn, Oliver T1 - Scientific service project z02 at the CSMC: material science methods of reconstructing the history of manuscripts N2 - Z02 is one of the three technically supporting projects at the Centre for the Study of Manuscript Cultures (CSMC). In collaboration with the other two service projects, Z01 and Z03, it aims at bridging the gap between humanities and natural sciences and technology. To that purpose, we set up a laboratory with a range of high-end instruments, most of them mobile, allowing thorough non-destructive analysis of manuscripts. In addition to working on constantly improving the laboratory and the methods of analysis, a substantial part of our activities is dedicated to service, by supporting different research projects conducted at the centre. In this talk, we will present our equipment and the possibilities offered by the different techniques available regarding the different kinds of missions: typology and classification of inks, provenance studies, recovery of faded inscriptions and palimpsests, reconstruction of the history of manuscripts, authentication and dating. We will give a brief overview of our past and ongoing activities in the frame of the second phase of the CSMC. Finally, a selection of three projects will be presented in greater detail to highlight the possibilities of our laboratory and the diversity of missions which can be carried out. T2 - International Medieval Conference CY - Leeds, United Kingdom DA - 01.07.2019 KW - Manuscript KW - Ink KW - Pigment PY - 2019 AN - OPUS4-48465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hamann, Christopher A1 - Adam, Christian A1 - Stolle, Dirk A1 - Spanka, M. A1 - Auer, G. T1 - Thermochemical treatment of waste products from iron and steel production N2 - This presentation summarizes the development of a novel thermochemical process for recycling of zinc and lead-bearing wastes (blast furnace sludge and electric arc furnace dust) that accumulate during iron and steel production. T2 - European Metallurgical Conference 2019 CY - Düsseldorf, Germany DA - 23.06.2019 KW - Blast furnace sludge KW - Electric arc furnace dust KW - Recycling KW - Selective chlorination KW - Zinc PY - 2019 AN - OPUS4-48364 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas A1 - Lewerenz, Dominique A1 - Schmidt, Selina A1 - Schreiber, Frank T1 - Heterogeneity in the bacterial response to disinfection and its impact on antibiotic tolerance and resistance N2 - The global rise of antibiotic resistance has made the proper use of disinfectants more important than ever. Their application in clinical l settings is an integral part of antibiotics stewardship by preventing the occurrence and spread of infections. However, improper use of disinfectants also harbours the risk for the evolution of tolerance and resistance to disinfectants, but also to antibiotics. It is therefore crucial to understand whether and how bacteria can survive chemical disinfection and which conditions facilitate the evolution of tolerance and resistance. Here, we study the heterogeneity in the response of isogenic E. coli populations exposed to different levels of commonly used disinfectants. At concentrations below the minimal inhibitory concentration (MIC), we find that certain disinfectants induce prolonged lag times in individual cells, a phenotype that has been associated with persistence against antibiotics. At concentrations above the MIC, we find heterogeneous killing for a range of the tested substances. Interestingly, for the three cationic surfactants that were tested, we find kill kinetics revealing the presence of a tolerant subpopulation that can withstand disinfection longer than most of the population. We will present results from an ongoing evolution experiment in which we test the potential for evolution of population-wide tolerance and resistance through intermittent exposure to lethal doses of a cationic surfactant. T2 - New Approaches and Concepts in Microbiology CY - Heidelberg, Germany DA - 10.07.2019 KW - Persistence KW - Biocides KW - Resistance KW - heterogeneity KW - Bacteria PY - 2019 AN - OPUS4-48524 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rahrig, M. A1 - Torge, Manfred T1 - 3D inspection of the restoration and conservation of stained glass windows using high resolution structured light scanning N2 - The initial focus of this research was on the development of a general workflow for the documentation and monitoring of historical stained glass windows using structured light scanning. Therefore windows from different churches, time periods and with different corrosion and damage phenomena were scanned before and after conservation measures. To evaluate the execution of the restoration measures the data was compared using 3D inspection software to examine the differences in geometry between the two scans. Various problems had to be solved, for example, how to deal with heavily reflective surfaces and the extreme contrast between light and dark surfaces, as seen in the borders between ‘Schwarzlot’ painting and plain glass. The application of materials for matting the surfaces, such as Cyclododecane spray, was impossible due to the high accuracy of the surface measurement required for 3D inspection. Regarding the contrast differences of the surfaces, the creation of exposure fusions and the use of polarization filters to reduce reflections were tested. In addition to the general problems encountered when recording translucent surfaces, the historical glasses caused additional problems in calculating surface comparisons. For example, the windows have to be moved and turned around several times, both during the conservation process and while scanning, causing deformations of the geometry due to the flexible lead rods allowing a certain degree of movement. T2 - 27th CIPA International Symposium “Documenting the past for a better future” CY - Ávila, Spain DA - 01.09.2019 KW - Stained glass KW - Restoration and conservation KW - Structured light scanning KW - 3D inspection KW - Glass scanning PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-491286 DO - https://doi.org/10.5194/isprs-archives-XLII-2-W15-965-2019 VL - XLII-2/W15 SP - 965 EP - 972 PB - International Society of Photogrammetry and Remote Sensing (ISPRS) CY - Hannover AN - OPUS4-49128 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pietsch, Franziska A1 - Schreiber, Frank A1 - Heidrich, Gabriele T1 - Selection of resistance in bacterial biofilms grown on antimicrobial surfaces in a multidrug environment N2 - Introduction: Biofilms are regarded as a common cause of chronic infections on medical devices. Preventive and therapeutic strategies against biofilm infections commonly involve applications of multiple antimicrobial substances: antimicrobial coatings on the implanted biomaterials in combination with systemically administered antibiotics. While this practice of combination therapy harbours the risk of developing cross-resistance, it might also provide the possibility to implement specific antimicrobial-antibiotic combinations (AACs) that can slow down the selection of antibiotic resistant strains. Hypothesis and aims: Specific AACs can exert combinatorial effects on the growth of susceptible and antibiotic-resistant Pseudomonas aeruginosa that either suppress or increase their individual effects. Our aim is to identify AACs with antagonistic or synergistic effects on pseudomonal biofilms and to understand their impact on selection of resistant strains. Specifically, we want to identify AACs that select for and against antibiotic resistance during biofilm formation. Methodology: We screened for AACs that cause antagonistic or synergistic effects on planktonic P. aeruginosa. To study the effect of antimicrobial-antibiotic exposure on resistance selection in bacterial biofilms, we will grow resistant and sensitive strains on PDMS surfaces with and without antimicrobial coatings and expose them to antibiotics. Results: Several combinations with synergistic or antagonistic interaction on the growth rate of P. aeruginosa were detected. We observed a strong antagonism when combining the antimicrobial substance chlorhexidine with the carbapenem drug meropenem. A meropenem-resistant mutant showed a selection advantage in low concentrations of chlorhexidine combined with a sub-inhibitory concentration of meropenem over the wild-type. No antagonistic effect was observed for the same combination when E. coli was exposed to chlorhexidine and meropenem, suggesting a non-chemical basis for the observed effect on P. aeruginosa. Conclusion: Gaining a better understanding about resistance selection during biofilm formation on biomedical surfaces will enable us to mitigate against biofilm-associated antimicrobial resistance. T2 - Eurobiofilms 2019 CY - Glasgow, UK DA - 03.09.2019 KW - Resistance KW - Antibiotics KW - Pseudomonas PY - 2019 AN - OPUS4-49168 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steckenmesser, D. A1 - Vogel, Christian A1 - Steffens, D. T1 - Medium-scale Plant Experiment of Sewage Sludge based Phosphorus Fertilizers from Large-scale Thermal Processing N2 - Phosphorus (P) recycling from sewage sludge for agricultural needs has to meet requirements for agricultural implementation, such as short and long-term P-plant-availability under field conditions. Field experiments often bring no evaluable results, because agricultural soils got a high potential of P-supply even if they are classified as low in P-supply according to the CAL extraction method. The present study presents a possible way to investigate the P-plant-availability of P-recycling-fertilizers under field-like conditions. The plant experiments are firstly performed in small Mitscherlich pots in growth chambers and subsequently in containers with a high soil volume of 170 kg under greenhouse conditions, in which plants can grow until ripening. The tested P-recycling fertilizers were produced from sewage sludge in a large-scale thermal process. It was a two-step treatment process performed with a pyrolysis of sewage sludge at 550°C (SSC-550) and a subsequent thermochemical post-treatment at 950°C with Na2SO4 (SSA-Na) and HCl + Na2SO4 (SSA-HCl/Na) as additives. The results show, that the P-recycling-products from pyrolysis got an adequate long-term but a 65% lower short-term P-plant-availability compared to triple superphosphate. SSA-Na and SSA-HCl/Na show both a high short and longterm P-plant-availability comparable to triple-superphosphate. This can be explained by their highly plant-available P-compound CaNaPO4. KW - Fertilzer KW - Sewage sludge KW - Plant Experiment KW - Thermal treatment PY - 2019 DO - https://doi.org/10.1080/00103624.2019.1667373 VL - 50 IS - 19 SP - 2469 EP - 2481 PB - Taylor & Francis AN - OPUS4-49143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Sekine, R. A1 - Huang, J. A1 - Steckenmesser, D. A1 - Steffens, D. A1 - Huthwelker, T. A1 - Borca, C. A1 - Pradas del Real, A. A1 - Castillo-Michel, H. A1 - Adam, Christian T1 - Effect of Nitrification Inhibitor on Nitrogen Forms in Soil and Phosphorus Uptake of Plants N2 - Phosphorus (P) resource availability is declining and the efficiency of applied nutrients in agricultural soils is becoming increasingly important. This is especially true for P-fertilizers from recycled materials which often have a lower plant-availability compared to commercial P-fertilizers but are expected to play an increasingly important role into the future (Kratz et al. 2019). One promising way to increase the plant-availability of the fertilizer P is a co-fertilization with specific nitrogen (N) forms which can enhance the P uptake and make P-fertilizers from recycled material more competitive to commercial phosphate rock-based P-fertilizers (Rahmatullah et al. 2006; Vogel et al. 2018). To investigate this effect, we performed a pot experiment with three different P-fertilizers (sewage sludge-based, phosphate rock and triple superphosphate) and ammonium nitrate sulfate as a co-fertilizer, without and with a nitrification inhibitor (NI), and analyzed the form of N and P in soil via a suite of chemical and novel X-ray spectroscopic methods. The application of NI with the P and N fertilizers led to a higher dry matter yield and a higher P uptake of maize. Novel N K-edge micro-X-ray absorption near-edge structure (micro-XANES) spectroscopy identified that the application of a NI promotes the temporary formation of a non-exchangeable N in detectable hot-spots in the soil. The subsequent slow release and prolonged availability of N during plant growth leads to higher yield and nutrient uptake. It can be concluded that NIs lead to a temporary fixation of ammonium-N in a pool that can be accessed by plant roots. Those types of available nutrient pools meet the idea of so-called “next generation fertilizers” as plants have access to nutrients according to their current demand. T2 - Annual Meeting of the German Society of Plant Nutrition (DGP) CY - Berlin, Germany DA - 25.09.2019 KW - Fertilzer KW - X-ray adsorption near-edge structure (XANES) spectroscopy KW - Nitrification inhibitor KW - Agronomic performance PY - 2019 AN - OPUS4-49144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nehring, Grzegorz A1 - Pronobis-Gajdzis, M. A1 - Targowski, P. A1 - Rabin, Ira T1 - What should we take into an account in the characterization of iron-gall ink by means of X-ray fluorescence? N2 - The earliest known recipes for iron gall inks include four basic ingredients: oak galls – pathological growths of oak leaves; metal salts – usually referred to as vitriol; a binder such as gum Arabic; and water. The final product differs in the elemental composition due to the multitude of recipes as well as differences within the composition of the ink’s ingredients. Nowadays, based on the qualitative and semi-quantitative evaluation of X-ray fluorescence data, it is possible to distinguish inks on the basis of the so-called fingerprint model. The first goal of our study was to determine to what extent the type of XRF spectrometer affects the quality of the ink evaluation. We tested two types of spectrometers, semi-stationary machines equipped with polycapillary focusing optics and a handheld spectrometer with a diaphragm collimator and a relatively big interaction spot. The second goal was to address the issue of whether the ink composition might be affected by storage in a metal container. The presentation will discuss the role of the spectrometer type in the evaluation of a thin layer material such as ink. We have also learned that the iron-gall ink composition might depend on the type of vessel in which ink was being stored. T2 - Konferenz - XIV IADA Congress - Warsaw 2019 CY - Warsaw, Poland DA - 23.09.2019 KW - Iron-gall ink KW - XRF KW - Inkwells KW - Ink composition PY - 2019 AN - OPUS4-49149 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schwibbert, Karin A1 - Menzel, F. A1 - Epperlein, N. A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - Bacterial adhesion on femtosecond laser-modified polyethylene N2 - In this study, femtosecond laser-induced sub-micrometer structures are generated to modify polyethylene (PE) surface topographies. These surfaces were subjected to bacterial colonization studies with Escherichia coli and Staphylococcus aureus as test strains. The results reveal that the nanostructures do not influence S. aureus coverage, while the adhesion of E. coli is reduced. KW - Bacterial adhesion KW - Laser-modified surface KW - Polyethylene KW - Laser-induced nanostructures KW - Biofilm PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-492280 DO - https://doi.org/10.3390/ma12193107 VL - 12 IS - 19 SP - 3107 PB - MDPI CY - Basel, Schweiz AN - OPUS4-49228 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Haustein, T. A1 - Busweiler, Sabine A1 - Haustein, V. A1 - von Laar, C. A1 - Plarre, Rüdiger T1 - Laboratory breeding of Korynetes caeruleus (Coleoptera: Cleridae) for the biological of Anobium punctatum) (Coleoptera, Ptinidae) N2 - Larvae and adults of Korynetes caeruleus (de Geer 1775) (Coleoptera: Cleridae) were collected from old churches and reared in the laboratory on Anobium punctatum (de Geer 1774) (Coleoptera: Ptinidae). Breeding success of K. caeruleus was low, but basic parameters of this species’ developmental cycle were identifi ed. At 21°C and 75% relative humidity and a fourmonth cold period at 4°C, the development of K. caeruleus from egg to adult appearance lasted 2 years. The pupal stage may be reached and completed after one and a half years. Feeding on larvae of A. punctatum by larvae of K. caeruleus was observed and consisted of a combination of sucking haemolymph and consuming body parts. The sickle-like mandibles of larvae of K. caeruleus penetrate the cuticle of prey larvae; this is followed by pumping and sucking body movements. Adult beetles of A. punctatum were not attacked by K. caeruleus larvae. Feeding behaviour of adult K. caeruleus was not investigated. KW - Cultural heritage KW - Coleoptera KW - Korynetes caeruleus KW - Cleridae KW - Ptinidae KW - Anobium punctatum KW - Biological pest control KW - Life history data KW - Laboratory breeding KW - Wood protection PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-494999 DO - https://doi.org/10.14411/eje.2019.038 SN - 1802-8829 VL - 116 SP - 362 EP - 371 PB - České Budějovice AN - OPUS4-49499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kämpf, K. A1 - Schmidt, Alexandra A1 - Bresch, Harald A1 - Bachmann, V. A1 - Kuhlbusch, T. A1 - Schwirn, K. A1 - Völker, D. T1 - Test Guideline on Particle Size and Size Distribution of Manufactured Nanomaterials N2 - The particle size distribution is considered the most relevant information for nanoscale property identification and material characterization. The current OECD test guideline on particle size and size distribution (TG 110) is not applicable to ‘nano-sized’ objects. In this project we thus develop a new OECD test guideline for the measurement of the size and size distribution of particles and fibers with at least one dimension in the nanoscale. A fiber is defined as an object having an aspect ratio of length/diameter l/d >3. The width and length of each fiber should be measured concurrently. In order to measure the particle size distributions, many techniques are available. 9 methods for particles and 2 methods for fibres have been tested in a prevalidation study and appropriate methods will be compared in an interlaboratory round robin test starting in February 2019. T2 - Workshop zur gemeinsamen Forschungsstrategie der Bundesoberbehörden „Nanomaterialien und andere innovative Werkstoffe: anwendungssicher und umweltverträglich“ CY - Berlin, Germany DA - 02.09.2019 KW - OECD KW - Nano KW - Guideline KW - Particle size distributuion KW - Prüfrichtlinie PY - 2019 AN - OPUS4-49507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Ghigo, Tea A1 - Rabin, Ira ED - Buzi, P. T1 - Detecting Early Medieval Coptic literature in Dayr Al-Anba Maqar, Between textual conservation and literary rearrangement: The case of Vat. Copt. 57 N2 - The study of the VAt.Copt. 57 at the Vatican Library. Codicological, palaeographical, textual and archaeometrical considerations. KW - Coptic KW - Archaeometry KW - Ink KW - Manuscripts PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-494004 SN - 978-88-210-1025-5 SP - 77 EP - 83 PB - Biblioteca Apostolica Vaticana AN - OPUS4-49400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina A1 - Schreiber, Frank T1 - Antimicrobial resistance in soil microbes mediated by resistance evolution and horizontal gene transfer (HGT) N2 - Questions: Biocides are in contact with soils through direct application and passive leaching from protected materials. Consequently, soil microorganisms are exposed to toxic biocides even though they are not their primary targets. Soil is a large reservoir of microbial diversity and has been hypothesized to be a crucial factor for the evolution and spread of antimicrobial resistance. Currently, there is little knowledge on how biocides used to protect materials affect the evolution and spread of resistance. Thus, our aim is to investigate the risk for the evolution of biocide resistance and cross-resistance to antibiotics. In addition, we aim to elucidate the affect of biocides on the spread of resistance via horizontal gene transfer (HGT). Methods: In laboratory evolution experiments we culture selected model soil microorganism with representative biocides followed by antibiotic cross-resistance determination and genome sequencing. Moreover, we investigate if the selected biocides affect the HGT frequency of plasmids that carry resistance genes among soil microorganism and the consequences for survival of the affected populations. Results: Our initial results show only small increases of biocide resistance during serial transfers in the presence of biocides. One reason for this might be the narrow selective window for biocide resistance due to steep dose-response relationships. Furthermore, we will present results from ongoing experiments on the effects of material preservatives on HGT frequencies facilitating microbial community adaptation to stress. Conclusions: The results will enable future risk assessment regarding resistance evolution for biocides used as material preservatives. T2 - 5th International Symposium on the Environmental Dimension of Antibiotic Resistance (EDAR) CY - Hong Kong, China DA - 09.06.2019 KW - Biocides KW - Horizontal gene transfer HGT KW - Microbiology KW - Resistance evolution KW - Antimicrobial resistance PY - 2019 AN - OPUS4-49401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina A1 - Schreiber, Frank T1 - Antimicrobial resistance in soil microbes mediated by resistance evolution and horizontal gene transfer (HGT) N2 - Question: Biocides are in contact with soils through direct application and passive leaching from protected materials. Consequently, soil microorganisms are exposed to toxic biocides even though they are not their primary targets. Soil is a large reservoir of microbial diversity and has been hypothesized to be a crucial factor for the evolution and spread of antimicrobial resistance. Currently, there is little knowledge on how biocides used to protect materials affect the evolution and spread of resistance. Thus, our aim is to investigate the risk for the evolution of biocide resistance and cross-resistance to antibiotics. In addition, we aim to elucidate the affect of biocides on the spread of resistance via horizontal gene transfer (HGT). Methods: In laboratory evolution experiments we culture selected model soil microorganism with representative biocides followed by antibiotic cross-resistance determination and genome sequencing. Moreover, we investigate if the selected biocides affect the HGT frequency of plasmids that carry resistance genes among soil microorganism and the consequences for survival of the affected populations. Results: Our initial results show only small increases of biocide resistance during serial transfers in the presence of biocides. One reason for this might be the narrow selective window for biocide resistance due to steep dose-response relationships. Furthermore, we will present results from ongoing experiments on the effects of material preservatives on HGT frequencies facilitating microbial community adaptation to stress. Conclusions: The results will enable future risk assessment regarding resistance evolution for biocides used as material preservatives. T2 - 8th Congress of European Microbiologists - FEMS 2019 CY - Glasgow, UK DA - 07.07.2019 KW - Biocides KW - Horizontal gene transfer HGT KW - Microbiology KW - Resistance evolution KW - Antimicrobial resistance PY - 2019 AN - OPUS4-49402 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - An, Biwen Annie A1 - Kleinbub, Sherin A1 - Herrmann, Annett T1 - Investigation of methanogen-induced microbiologically influenced corrosion (Mi-MIC) using simulated marine environments under flowing conditions N2 - Microbiologically influenced corrosion (MIC) of iron is usually attributed to sulfate-reducing microorganisms (SRM) in offshore industries, such as the oil and gas pipelines, due to the high concentrations of sulfate in the seawater. SRM act upon the metal by the reactiveness of hydrogen sulfide (HS-), and by withdrawal of the available electrons (Fe --> Fe2+ + 2e-; E° = -0.47 V) in electrical contact with the metal (EMIC). However, methanogenic archaea can also cause MIC. Because they do not produce HS-, withdrawal of electrons may be their main corrosive mechanism; however, mechanistic details and kinetics of the overall process are poorly understood. To investigate the corrosion potential of methanogens, we studied the EMIC methanogenic strains isolated from marine sediments (Methanobacterium-affiliated strain IM1) and crude oil tanks (Methanococcus maripaludis Mic1c10), in an in-house developed flow-through cell to simulate a fluctuating environment. A co-culture of M. maripaludis and D. alaskensis was also established to study the effect of syntrophic growth on metal corrosion that may occur in industrial pipelines. Results indicate that the rates of iron corrosion due to coupled methanogenesis (up to 0.4 mm/yr) are higher to that caused by the marine SRM Desulfovibrio alaskensis (0.15 mm/yr). Surface analyses of the metal showed severe pitting with high methane production. Genomic analysis of the EMIC methanogen M. maripaludis Mic1c10 will provide an insight on the mechanisms of MIC. Such knowledge and deeper understanding also from an electrokinetic point of view may not only provide further models in microbial electrophysiology, but also contribute to mitigation strategies in MIC T2 - Einladung zum Kolloquium HZDR – Helmholtz-Zentrum Dresden-Rossendorf CY - Dresden, Germany DA - 24.09.2019 KW - Corrosion KW - MIC KW - Archaea KW - Methanogens KW - Environmental Simulation PY - 2019 AN - OPUS4-49403 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina A1 - Schreiber, Frank T1 - Antimicrobial resistance in soil microbes mediated by resistance evolution and horizontal gene transfer (HGT) N2 - Question: Biocides are in contact with soils through direct application and passive leaching from protected materials. Consequently, soil microorganisms are exposed to toxic biocides even though they are not their primary targets. Soil is a large reservoir of microbial diversity and has been hypothesized to be a crucial factor for the evolution and spread of antimicrobial resistance. Currently, there is little knowledge on how biocides used to protect materials affect the evolution and spread of resistance. Thus, our aim is to investigate the risk for the evolution of biocide resistance and cross-resistance to antibiotics. In addition, we aim to elucidate the affect of biocides on the spread of resistance via horizontal gene transfer (HGT). Methods: In laboratory evolution experiments we culture selected model soil microorganism with representative biocides followed by antibiotic cross-resistance determination and genome sequencing. Moreover, we investigate if the selected biocides affect the HGT frequency of plasmids that carry resistance genes among soil microorganism and the consequences for survival of the affected populations. Results: Our initial results show only small increases of biocide resistance during serial transfers in the presence of biocides. One reason for this might be the narrow selective window for biocide resistance due to steep dose-response relationships. Furthermore, we will present results from ongoing experiments on the effects of material preservatives on HGT frequencies facilitating microbial community adaptation to stress. Conclusions: The results will enable future risk assessment regarding resistance evolution for biocides used as material preservatives. T2 - Symposium für Doktorandinnen und Doktoranden – 2019 CY - Berlin, Germany DA - 27.09.2019 KW - Biocides KW - Horizontal gene transfer HGT KW - Microbiology KW - Resistance evolution KW - Antimicrobial resistance PY - 2019 AN - OPUS4-49404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schütz, R. A1 - Maragh, J. A1 - Weaver, J. A1 - Rabin, Ira A1 - Masic, A. T1 - The Temple Scroll: Reconstructing an ancient manufacturing practice N2 - The miraculously preserved 2000-year-old Dead Sea Scrolls, ancient texts of invaluable historical significance, were discovered in the mid-20th century in the caves of the Judean desert. The texts were mainly written on parchment and exhibit vast diversity in their states of preservation. One particular scroll, the 8-m-long Temple Scroll is especially notable because of its exceptional thinness and bright ivory color. The parchment has a layered structure, consisting of a collagenous base material and an atypical inorganic overlayer. We analyzed the chemistry of the inorganic layer using x-ray and Raman spectroscopies and discovered a variety of evaporitic sulfate salts. This points toward a unique ancient production technology in which the parchment was modified through the addition of the inorganic layer as a writing surface. Furthermore, understanding the properties of these minerals is particularly critical for the development of suitable conservation methods for the preservation of these invaluable historical documents. KW - Temple Scroll KW - Dead Sea Scrolls PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-495314 DO - https://doi.org/10.1126/sciadv.aaw7494 VL - 5 IS - 9 SP - 1 EP - 9 PB - AAAS AN - OPUS4-49531 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira A1 - Krutzsch, M. T1 - The Writing Surface Papyrus and its Materials N2 - Our experimental knowledge about the inks of antiquity and late antiquity rarely goes beyond their visual description. In rare cases, inks typology has been determined by means of microscopy and reflectography, i.e. using their physical and optical properties, respectively. Since carbon, plant and iron gall inks belong to different classes of compounds they could be easily distinguished had only pure inks been used. Even these crude observations suggest that the inks used differed greatly in their composition. Reconstruction of the ink recipes with the help of advanced non-destructive analytical techniques could serve as a powerful accessory for in the studies of ancient papyri. The proposed paper will present a short survey of the methods of material analysis and the challenges offered by ancient inks. The examples of the ink studies from the collections of the Israel Museum in Jerusalem and Egyptian Museum in Berlin will conclude the paper. T2 - 28th Congress of Papyrology CY - Barcelona, Spain DA - 01.08.2016 KW - Papyrus KW - Ink PY - 2019 SP - 773 EP - 781 AN - OPUS4-49532 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - An, Biwen Annie A1 - Koerdt, Andrea T1 - Investigating and modelling MIC using in-house developed flow system (Hi-Tension) N2 - Microbiologically influenced corrosion is a multidisciplinary research area. To develop successful mitigation strategies, expertise from the industry and research institutes are essential. In Department 4.1, we developed an innovative laboratory flow model (Hi-Tension) that allows effective monitoring of MIC under both standard and non-standard conditions. The flow model allows flexibility with material selection, flow rates, temperature and other environmental parameters changes. Furthermore, the flow model allows integration of electrochemical measurements using microsensors, providing a comprehensive view of corrosion at the biofilm level. Currently, initial results indicate corrosion in the flow model is significantly higher than that of standard laboratory set ups, i.e. static incubations, particularly for methane-producing microorganisms. T2 - Departmental Meeting with Helmotz Dresden CY - BAM, Berlin, Germany DA - 04.11.2019 KW - MIC KW - Corrosion KW - FIB/SEM KW - Corrosion products KW - Hi-Tension KW - Flow Model KW - Modelling PY - 2019 AN - OPUS4-49417 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - An, Biwen Annie A1 - Koerdt, Andrea A1 - Kleinbub, Sherin T1 - Microbial modelling of sulfate-reducing bacteria (SRB) and methanogenic archaea (ME) using iron N2 - Sulfate reducing bacteria (SRB) and methanogenic archaea (MA) are commonly found in the oil and gas environments. The formation of hydrogen sulfide (HS-) is particularly concerning for the petroleum industry due to its corrosiveness. However, the activities of SRB are limited to the concentration of sulfate present in the environment, whereas methanogens can utilize substrates such as H¬2 for methanogenesis. MA is commonly found in sulfate-free environments, such as deep sediments, and are known to form interspecies electron transfer relationships with SRB. Recently, SRB and MA capable of microbiologically influenced corrosion (MIC) by using elemental iron as a direct electron source (EMIC) have gained increased attention. On the iron surface, EMIC-SRB can outcompete EMIC-MA in the presence of sulfate, but this changes as sulfate depletes. The formation of FeS on the metal surface can be further utilized by MA for methanogenesis as it provides a conductive path. However, the possible kinetics involved of the overall process are currently unknown. We obtained a co-culture of EMIC-SRB and EMIC-MA to investigate the growth rates and electrical potential changes under different environmental conditions, including changes in pH, temperature and salinity. Results indicate that under neutral conditions and using iron as the sole substrate, methane production (up to 5 mM) starts after sulfate was depleted. Electrochemical measurements will be conducted on the co-culture under different conditions to determine the changes in the electrical potential in correlation with the sulfate and methane concentration. Fluorescence and electron microscope images of the biofilm structure will be used to visualize cell distribution and morphology. This study embarks the first step of understanding the relationship between EMIC-SRB and EMIC-MA. Such knowledge is important for the field of microbial electrophysiology and can be further explored for industrial applications. T2 - 7th International Symposium on Applied Microbiology and Molecular Biology in Oil Systems (ISMOS-7) CY - Halifax, Canada DA - 18.06.2019 KW - MIC KW - Corrosion KW - FIB/SEM KW - Corrosion products KW - Bacteria KW - Archaea KW - Iron PY - 2019 AN - OPUS4-49420 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Krom, I. A1 - Heikens, D. A1 - Richter, Matthias A1 - Horn, Wolfgang A1 - Baldan, A. T1 - CRMs for (semi-)VOCs in sorbent tubes N2 - EN 16516 sets the test method and requirements for the determination of emissions of Volatile Organic Compounds (VOCs) from building materials into indoor air. To address the quality control requirements for the class of semi-VOCs (SVOCs), VSL developed gaseous reference materials. A novel home-made dynamic gas mixture preparation system, operating according to ISO 6145-4 (continuous injection method), has recently been developed and validated. Thanks to the stable temperature control up to 100 oC, the system can prevent condensation of the SVOCs in air at indoor air concentration levels. The in-situ obtained SVOC gas standards can be sampled in sorbent tubes to obtain SVOC transfer standards. A study was performed to determine the optimal sorbent material and storage conditions. This study will be presented together with the results of the 2018 Round Robin test for emission test chamber measurements organised by BAM. Using the novel system, VSL prepared transfer standards with known amounts of VOCs and SVOCs for participants to evaluate their analytical performance. T2 - Emissions and Odours from Materials CY - Brussels, Belgium DA - 07.10.2019 KW - CRM KW - VOC transfer standards KW - Round robin test KW - Material emissions testing PY - 2019 AN - OPUS4-49423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Mohr, Gunther A1 - Baesso, Ilaria A1 - Straße, Anne A1 - Pittner, Andreas A1 - Pignatelli, Giuseppe A1 - Seeger, Stefan A1 - Nazarzadehmoafi, Maryam A1 - Ehlers, Henrik A1 - Gohlke, Dirk A1 - Homann, Tobias A1 - Scheuschner, Nils A1 - Ulbricht, Alexander A1 - Heinrich, P. A1 - Maierhofer, Christiane T1 - Process monitoring of additive manufacturing of metals - an overview of the project ProMoAM N2 - The project ProMoAM is presented. The goal of the project is to evaluate which NDT techniques or combination of techniques is suited for in-situ quality assurance in additive manufacturing of metals. To this end, also 3d-data fusion and visualization techniques are applied. Additional ex-situ NDT-techniques are used as references for defect detection and quantification. Feasability studies for NDT-techniques that are presently not applicable for in-situ use are performed as well. The presentation gives a brief overview of the whole project and the different involved NDT-techniques. T2 - Workshop od Additive Manufacturing: Process, materials, simulation & implants CY - Berlin, Germany DA - 13.05.2019 KW - Additive manufacturing KW - Process monitoring KW - NDT PY - 2019 AN - OPUS4-48087 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kjaervik, Marit A1 - Dietrich, P. A1 - Thissen, A. A1 - Schwibbert, Karin A1 - Brown, J. A1 - Hardie, K. A1 - Unger, Wolfgang T1 - Model systems and sample preparation for surface characterisation of bacteria and biofilms by near-ambient pressure XPS N2 - Bacterial samples are typically freeze dried or cryo-prepared prior to XPS analysis to allow for measurements in ultra-high vacuum (UHV). The sample environment in the near-ambient pressure (NAP) XPS instrument EnviroESCA allows for measurements in up to 15 mbar water vapor, thus, sample preparation is no longer restricted to UHV-compatible techniques. For instance, biofilms grown in medium can be transferred directly from the medium to the measurements chamber, maintaining a humid environment throughout the measurements. Considering the complexity of bacterial samples, sample preparation must be carefully considered in order to obtain meaningful and reproducible results. In this talk, various strategies for sample preparation of bacteria and biofilms for NAP-XPS measurements will be discussed. Model systems of planktonic bacteria, artificial biofilms resembling the exopolysaccharide matrix and biofilms have been characterised in various conditions. The stability and homogeneity of the samples was assessed by monitoring the C1s core level peak at different sample locations. The quality of the XPS-spectra is also influenced by the gas environment, which will be exemplified by core level spectra of P. Fluorescens acquired in air, water vapor and ultra-high vacuum. T2 - 18th European conference on applications of surface and interface analysis (ECASIA) CY - Dresden, Germany DA - 15.09.2019 KW - NAP-XPS KW - Biofilms KW - Bacteria KW - E. coli KW - XPS PY - 2019 AN - OPUS4-49189 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - An, Biwen Annie A1 - Shen, Y. A1 - Voordouw, J. A1 - Voordouw, G. ED - Dumas, C. T1 - Halophilic Methylotrophic Methanogens May Contribute to the High Ammonium Concentrations Found in Shale Oil and Shale Gas Reservoirs N2 - Flow-back and produced waters from shale gas and shale oil fields contain high ammonium, which can be formed by methanogenic degradation of methylamines into methane and ammonium. Methylamines are added to fracturing fluid to prevent clay swelling or can originate from metabolism of the osmolyte triglycinebetaine (GB). We analyzed field samples from a shale gas reservoir in the Duvernay Formation and from a shale oil reservoir in the Bakken formation in Canada to determine the origin of high ammonium. Fresh waters used to make fracturing fluid, early flow-back waters, and late flow back waters from the shale gas reservoir had increasing salinity of 0.01, 0.58, and 2.66 Meq of NaCl, respectively. Microbial community analyses reflected this fresh water to saline transition with halophilic taxa including Halomonas, Halanaerobium, and Methanohalophilus being increasingly present. Early and late flow-back waters had high ammonium concentrations of 32 and 15 mM, respectively. Such high concentrations had also been found in the Bakken produced waters. Enrichment cultures of Bakken produced waters in medium containing mono, di-, or trimethylamine, or triglycinebetaine (GB) converted these substrates into ammonium (up to 20 mM) and methane. The methylotrophic methanogen Methanohalophilus, which uses methylamines for its energy metabolism and uses GB as an osmolyte, was a dominant community member in these enrichments. Halanaerobium was also a dominant community member that metabolizes GB into trimethylamine, which is then metabolized further by Methanohalophilus. However, the micromolar concentrations of GB measured in shale reservoirs make them an unlikely source for the 1,000-fold higher ammonium concentrations in flow-back waters. This ammonium either originates directly from the reservoir or is formed from methylamines, which originate from the reservoir, or are added during the hydraulic fracturing process. These methylamines are then converted into ammonium and methane by halophilic methylotrophic methanogens, such as Methanohalophilus, present in flow-back waters. KW - Methanogen KW - Oil and gas industry KW - Shale KW - Halophile KW - Corrosion PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-474982 UR - https://www.frontiersin.org/articles/10.3389/fenrg.2019.00023/full DO - https://doi.org/10.3389/fenrg.2019.00023 VL - 7 SP - Article 23, 1 EP - 13 PB - Frontiers Media CY - Frontiers in Energy Research AN - OPUS4-47498 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -