TY - CONF A1 - Grimmer, Christoph A1 - Strzelczyk, Rebecca A1 - Richter, Matthias A1 - Musyanovych, Anna A1 - Horn, Wolfgang T1 - Development, application and measurement uncertainty of emission reference materials N2 - Volatile organic compounds (VOCs) emitted by furniture and building materials can cause health issues. For an improvement of indoor air quality low emitting materials should be used. Quality assurance and –control (QA/QC) measures require an emission reference material (ERM) with a predictable emission rate of VOCs. The idea is to use porous materials as ERM, which store the VOCs inside their pores and emit them constantly. T2 - Webinar Metrology for Indoor Air Quality Reference materials for QA/QC of the emission test chamber procedure CY - Online meeting DA - 11.04.2024 KW - Emission reference materials KW - Indoor air quality KW - Materials emissions test KW - VOC PY - 2024 AN - OPUS4-59963 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grimmer, Christoph A1 - Richter, Matthias A1 - Musyanovych, Anna A1 - Strzelczyk, Rebecca A1 - Horn, Wolfgang T1 - Preparation of novel emission reference materials: μ-capsules & impregnated porous materials N2 - Volatile organic compounds (VOCs) emitted by furniture and building materials can cause health issues. For an improvement of indoor air quality low emitting materials should be used. Quality assurance and –control (QA/QC) measures require an emission reference material (ERM) with a predictable emission rate of VOCs. The idea is to use porous materials as ERM, which store the VOCs inside their pores and emit them constantly. T2 - WORKSHOP: METROLOGY FOR INDOOR AIR QUALITY CY - Mol, Belgium DA - 18.10.2023 KW - Emission reference materials KW - Indoor air quality KW - Materials emissions test KW - VOC PY - 2023 AN - OPUS4-59961 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Rühle, Bastian A1 - Bresch, Harald T1 - Competence Center nano@BAM Welcomes ISO/TC 229 Meeting in Berlin N2 - The Competence Center nano@BAM is presented. Examples directly related to the activities of the ISO Technical Committee TC 229 Nanotechnologies as well as BAM projects on nano reference measurement procedures, nano reference materials and nano reference data sets are showed. T2 - The 32nd ISO/TC 229 IEC/TC 113 JWG2 General Meeting CY - Berlin, Germany DA - 06.11.2023 KW - ISO/TC 229 Nanotechnologies KW - Nanoparticles KW - Nano@BAM KW - Reference materials KW - Reference data KW - Reference procedures PY - 2023 AN - OPUS4-58814 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bell, Jérémy A1 - Climent, Estela A1 - Gotor, Raúl A1 - Tobias, Charlie A1 - Martin-Sanchez, Pedro M. A1 - Rurack, Knut T1 - Dipstick coated with polystyrene-silica core-shell particles for the detection of microbiological fuel contamination N2 - Microbial contamination of fuels by fungi or bacteria poses risks such as corrosion and fuel system fouling, which can lead to critical problems in refineries and distribution systems and has a significant economic impact at every stage of the process. Many factors have been cited as being responsible for microbial growth, like the presence of water in the storage tanks. In fact, only 1 % water in a storage system is sufficient for the growth of microorganisms like bacteria or yeasts, as well as for the development of fungal biomass at the oil/water interface. This work presents a rapid test for the accurate determination of genomic DNA from aqueous fuel extracts. The detection is based on the use of polystyrene-mesoporous silica core-shell particles onto which modified fluorescent molecular beacons are covalently grafted. These beacons contain in the hairpin loop a target sequence highly conserved in all bacteria, corresponding to a fragment of the 16S ribosomal RNA subunit. The designed single-stranded molecular beacon contained fluorescein as an internal indicator and a quencher in its proximity when not hybridized. Upon hybridization in presence of the target sequence, the indicator and the quencher are spatially separated, resulting in fluorescence enhancement. To perform the assay the developed particles were deposited on different glass fibre strips to obtain a portable and sensitive rapid test. The assays showed that the presence of genomic DNA extracts from bacteria down to 50–70 μg L–1 induced a fluorescence response. The optical read-out was adapted for on-site monitoring by fitting a 3D-printed case to a conventional smartphone, taking advantages of the sensitivity of the CMOS detector. Such embedded assembly enabled the detection of genomic DNA in aqueous extracts down to the mg L–1 range and represents an interesting step toward on-site monitoring of fuel contamination. T2 - IMA 2023 CY - Chania, Greece DA - 18.09.2023 KW - Teststreifen KW - Test strip KW - Microbial KW - Mikrobiell KW - Smartphone KW - Particles KW - Partikeln PY - 2023 AN - OPUS4-58526 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tang, Chi-Long A1 - Seeger, Stefan A1 - Röllig, Mathias T1 - Minimizing the FFF-3D printer hardware bias on particle emission by adjustment of the set extruder temperature N2 - Fused filament fabrication (FFF) on desktop 3D printers is a material extrusion-based technique often used by educational institutions, small enterprises and private households. Polymeric filaments are melted and extruded through a heated nozzle to form a 3D object in layers. The extrusion temperature is therefore a key parameter for a successful print job, but also one of the main driving factors for the emission of harmful air pollutants, namely ultrafine particles and volatile organic gases, which are formed by thermal stress on the polymeric feedstock. The awareness of potential health risks has increased the number of emission studies in the past years. However, the multiplicity of study designs makes an objective comparison of emission data challenging because printer hardware factors such as the actual extruder temperature (TE) and also feedstockspecific emissions are not considered. We assume that across the market of commercial low- and mid-price FFF printers substantial deviations between actual and set extruder temperatures exist, which have a strong effect on the emissions and hence may bias the findings of exposure studies. In our last publication, we presented a standardized feedstock-specific emission test method and showed that for each investigated feedstock an increase in actual extruder temperature was accompanied by an increase in particle emissions (Tang and Seeger, 2022). Therefore, any systematic discrepancy between set and actual extruder temperature matters. In this study, we used a thermocouple and an infrared camera to measure the actual extruder temperatures at different heights. We found significant under- and overestimation of the actual extruder temperatures by the respective set temperatures in three commercial printers. This caused a broad variation of the measured total numbers of emitted particles (TP), even when the same feedstock was operated. For the determination of TP, we followed the DE-UZ 219 test guideline. In a second round we repeated the tests with all printers adjusted to exactly the same extruder temperatures, i.e., to TE=230°C for ABS and TE=210°C for PLA. All measurements were conducted in a 1 m³ emission test chamber. Particle emissions in the size range between 4 nm and 20 μm were detected. Printing on three different printer models without temperature adjustment resulted for each of the investigated feedstocks in a variation in TP of around two orders of magnitude. After temperature adjustment, this was substantially reduced to approx. one order of magnitude and hence minimizes the bias of printer hardware on the emissions. Our findings suggest that adjustment of the extruder temperature should be mandatory in emission testing standards. It also poses a more accurate benchmark and provides more reliable emission data for evaluation of indoor air quality or for health risk assessments. In addition, a proper temperature setting is in the interest of the user. Some commercial FFF printers may have a higher actual extruder temperature than displayed and unintended overheating may not only impair the print quality but may cause unnecessarily increased exposure to particle emissions. T2 - European Aerosol Conference 2023 CY - Málaga, Spain DA - 03.09.2023 KW - Ultrafine particles KW - Thermal imaging KW - 3D printing KW - Indoor air quality KW - Emission testing PY - 2023 AN - OPUS4-58258 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Matthias A1 - Grimmer, Christoph A1 - Musyanovych, A. A1 - Strzelczyk, Rebecca Skadi A1 - Horn, Wolfgang T1 - Emission reference materials for indoor air measurements N2 - In industrialised countries more than 80% of the time is spent indoors. Products, such as building materials and furniture, emit volatile organic compounds (VOCs), which are therefore ubiquitous in indoor air. VOC in combination may, under certain environmental and occupational conditions, result in reported sensory irritation and health complaints. Emission concentrations can become further elevated in new or refurbished buildings where the rate of air exchange with fresh ambient air may be limited due to improved energy saving aspects. A healthy indoor environment can be achieved by controlling the sources and by eliminating or limiting the release of harmful substances into the air. One way is to use (building) materials proved to be low emitting. Meanwhile, a worldwide network of professional commercial and non-commercial laboratories performing emission tests for the evaluation of products for interior use has been established. Therefore, comparability of test results must be ensured. A laboratory’s proficiency can be proven by internal and external validation measures that both include the application of suitable emission reference materials (ERM). For the emission test chamber procedure according to EN 16516, no artificial ERM is commercially available. The EU-funded EMPIR project MetrIAQ aims to fill this gap by developing new and improved ERMs. The goal is to obtain a material with a reproducible and temporally constant compound release (less than 10 % variability over 14 days). Two approaches were tested: the impregnation of porous materials with VOC, and the encapsulation of VOC in polymer microcapsules. Impregnation is performed with help of an autoclave and supercritical CO2. The encapsulation is done by interfacial polymerisation on VOC droplets. For both approaches, synthesis and/or material parameters were varied to obtain an optimal ERM. Findings about the optimisation of ERM generation, as well as performance of the best emission reference materials, will be presented. T2 - GAS Analysis 2024 CY - Paris, France DA - 30.01.2024 KW - Emission reference materials KW - Materials emissions test KW - VOC KW - Indoor air quality PY - 2024 AN - OPUS4-59506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Matthias A1 - Grimmer, Christoph A1 - de Krom, I. A1 - Maes, F. A1 - Lecuna, M. A1 - Musyanovych, A. A1 - Strzelczyk, Rebecca Skadi A1 - Horn, Wolfgang T1 - Metrological sound reference products for quality assurance and quality control measures in material emissions testing N2 - In industrialised countries more than 80% of the time is spent indoors. Products, such as building materials and furniture, emit volatile organic compounds (VOCs), which are therefore ubiquitous in indoor air. Different VOC combinations may, under certain environmental and occupational conditions, result in reported sensory irritation and health complaints. A healthy indoor environment can be achieved by controlling the sources and by eliminating or limiting the release of harmful substances into the air. One way is to use materials proven to be low emitting. Meanwhile, a worldwide network of professional commercial and non-commercial laboratories performing emission tests for the evaluation of products for interior use has been established. Therefore, comparability and metrological traceability of test results must be ensured. A laboratory’s proficiency can be proven by internal and external validation measures that both include the application of suitable reference materials. The emission test chamber procedure according to EN 16516 comprises several steps from sample preparation to sampling of test chamber air and chromatographic analysis. Quality assurance and quality control (QA/QC) must therefore be ensured. Currently, there is a lack of suitable reference products containing components relevant for the health-related evaluation of building products. The EU-funded EMPIR project 20NRM04 MetrIAQ (Metrology for the determination of emissions of dangerous substances from building materials into indoor air) aims to develop 1) gaseous primary reference materials (gPRM), which are used for the certification of gaseous (certified) reference materials (gCRM) and 2) emission reference materials (ERM). Most commercial gas standards of indoor-relevant compounds are not certified due to the lack of primary reference materials to which the project aims to contribute. The gPRM under development is a gas-phase standard containing trace levels of VOCs in nitrogen or air from the check standard according to EN 16516 (n-hexane, methyl isobutyl ketone, toluene, butyl acetate, cyclohexanone, o-xylene, phenol, 1,3,5-trimethylbenzene) with a target uncertainty of 5 %. The gPRM can be sampled into sorbent tubes to obtain transfer standards in the form of gCRM. The well characterised ERM represents a sample of a test specimen, e.g. building material, that is loaded into the emission test chamber for a period of several days and is used to evaluate the whole emission test chamber procedure. It shall have a reproducible and temporally constant compound release of less than 10 % variability over 14 days. Different approaches for retarded VOC release, such as the encapsulation of pure compounds and the impregnation of porous materials, are being tested to reach this aim. Furthermore, the design of the ERM is accompanied by the development of a numerical model for the prediction of the emissions for each of the target VOCs. The current progress of the work on both materials will be presented. T2 - CIM 2023 - 21st International Metrology Congress CY - Lyon, France DA - 07.03.2023 KW - Indoor air quality KW - VOC KW - Materials emissions testing KW - Emission reference material KW - Quality assurance/quality control PY - 2023 AN - OPUS4-57142 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Piechotta, Christian A1 - Iznaguen, H. A1 - Traub, Heike A1 - Feldmann, Ines A1 - Köppen, Robert A1 - Witt, Angelika A1 - Jung, Christian A1 - Becker, Roland A1 - Oleszak, K. A1 - Bücker, Michael A1 - Urban, Klaus A1 - Reger, Christian A1 - Ostermann, Markus T1 - Environmental sustainability and –stability of Materials concerning the Migration of pollutants N2 - MaUS is an acronym for ”Material und Umweltsimulationen“. Plastics are in the focus of environmental politics due to their long-term behaviour and therefore to their persistence. Not only that they appear as visible contaminants in the sea and on the beach, but their unknown behaviour concerning their additives as well as the related transformation products are anxious. Therefore, we wish to establish a certified reference method to provide a method for testing plastics. Aim of this project is the development of fast motion standard reference methods for testing plastics regarding to their environmental compatibility. To establish these testing methods, we use polystyrene (PS) and polypropylene (PP) with environmental relevant brominated flame retardants, known for their persistent bioaccumulative and toxic (PBT) properties. In case of PS the material contains 1 wt% of 1,2,5,6,9,10-hexabromocyclododecan (HBCD) and in case of PP 0.1 wt% bromodiphenylether (BDE-209), which is known as a substance of very high concern (SVHC). Furthermore, we use polycarbonate (PC), which is still used as material in baby flasks and releases Bisphenol A (BPA), an estrogenic active substance. As an additional material PTFE is used for its importance as a source for two ubiquitous environmental substances (PFOS and PFOA), whose toxicological effects are still incompletely known. The focus in this current work is set on the transfer of potential pollutants out of applied materials mentioned above into environmental compartments like water or soil. Here an accelerated aging concept should be developed to shortened time consuming natural processes. For these resulting simulations we use a programmable weathering chamber with dry and wet periods and with high and low temperatures. These programmes run for several weeks and according to a defined sampling schedule we take water samples, run a clean-up procedure by SPE (Molecular imprinted polymers (MiPs) resp. polymer-based cartridges (Waters Oasis HLB)) and analyse them by HPLC-UV resp. LC-MS/MS. Of most interest in case of flame retardants are photocatalytic transformation products. Therefore, we conduct a non-target-screening resp. a suspected target-screening by LC-MS/MS and HRMS. T2 - Project meeting PlasticsEurope - BAM CY - Leverkusen, Germany DA - 06.11.2018 KW - Environmental simulation KW - Pollutants PY - 2018 AN - OPUS4-47026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Piechotta, Christian A1 - Traub, Heike A1 - Ostermann, Markus A1 - Becker, Roland A1 - Köppen, Robert A1 - Bücker, Michael A1 - Reger, Christian T1 - LA-ICP-MS- und RFA-Messungen für die Bestimmung von polybromierten Flammschutzmitteln(PBFSM) in Polystyrol- und Polypropylenproben N2 - Gegenstand der vorzustellenden Arbeiten ist die Prüfung der Umwelt-beständigkeit und -verträglichkeit von Materialien und Produkten hinsichtlich der Emission von potenziellen Schadstoffen in die Umwelt. Hierzu werden chemisch-physikalische Einflüsse (Bewitterung) und mikrobielle Beanspruchungen an Modellmaterialien evaluiert. So werden die Freisetzungsraten von Schadstoffen in Abhängigkeit der Beanspruchung beschrieben. Als Modellmaterialien kommen die Polymere Polystyrol (PS) und Polypropylen (PP) zum Einsatz. Synergistische Effekte der Bewitterungsparameter und der mikrobiologischen Beanspruchung sollen dabei ebenso betrachtet werden, wie die gezielte Alterung. Auch findet eine Beschreibung des Verhaltens der ausgetragenen Schadstoffe (polybromierte Flammschutzmittel) in den Umweltkompartimenten Boden oder Wasser statt. Hier sind mit Hilfe der zu entwickelnden Screening- und non-Target-Analyseverfahren die Transformation und der Metabolismus durch Mikroorganismen zu beschreiben. Aus den Ergebnissen sollen Korrelationen zwischen den künstlichen Alterungsverfahren und realen Szenarien abgeleitet werden. T2 - Kolloquium "Aquatische Ökologie" CY - Essen, Germany DA - 27.11.2019 KW - Umweltsimulation KW - PBFSM KW - LA-ICP-MS KW - RFA PY - 2019 AN - OPUS4-49975 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Piechotta, Christian A1 - Iznaguen, H. A1 - Traub, Heike A1 - Feldmann, Ines A1 - Köppen, Robert A1 - Witt, Angelika A1 - Jung, Christian A1 - Becker, Roland A1 - Oleszak, K. A1 - Bücker, Michael A1 - Urban, Klaus A1 - Reger, Christian A1 - Ostermann, Markus T1 - TF-Projekt MaUS: Material und Umweltsimulation N2 - Gegenstand des Projekts ist die Prüfung der Umweltbeständigkeit und -verträglichkeit von Materialien und Produkten hinsichtlich der Emission von potenziellen Schadstoffen in die Umwelt. Hierzu werden chemisch-physikalische Einflüsse (Bewitterung) und mikrobielle Beanspruchungen an Modellmaterialien evaluiert. So werden die Freisetzungsraten von Schadstoffen in Abhängigkeit der Beanspruchung beschrieben. Als Modellmaterialien kommen die Polymere Polycarbonat, Polytetrafluorethylen, Polystyrol und Polypropylen zum Einsatz. Synergistische Effekte der Bewitterungsparameter und der mikrobiologischen Beanspruchung sollen dabei ebenso betrachtet werden, wie die gezielte Alterung. Auch findet eine Beschreibung des Verhaltens der ausgetragenen Schadstoffe in den Umweltkompartimenten Boden oder Wasser statt. Hier sind mit Hilfe der zu entwickelnden Screening- und non-Target-Analyseverfahren die Transformation und der Metabolismus durch Mikroorganismen zu beschreiben. Aus den Ergebnissen sollen Korrelationen zwischen den künstlichen Alterungsverfahren und realen Szenarien abgeleitet werden, die es gestatten, Schnellprüfverfahren zu etablieren, die die Simulation der realen Beanspruchungen im Zeitraffermodell anwendbar machen. Somit sollen standardisierbare Schnellbeanspruchungs-verfahren erarbeitet werden, die als Prüfeinrichtungen etabliert werden und von externen Auftraggebern zur Prüfung der Umweltbeständigkeit und -verträglichkeit von neuen Materialien genutzt werden können. Die Umweltwirkungen (chemisch-physikalisch und mikrobiologisch) sollen so definiert eingesetzt werden, dass eine reproduzierbare Prüfung möglich wird. Aus diesen Verfahren und Methoden sollen Normen abgeleitet werden, die eine standardisierte Materialprüfung ermöglichen. T2 - Projektmeeting BAM - Covestro CY - Leverkusen, Germany DA - 29.05.2018 KW - Umweltsimulation KW - Schadstoffaustrag PY - 2018 AN - OPUS4-47025 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -