TY - CONF A1 - Oberbeckmann, Sonja A1 - Gorbushina, Anna T1 - On the intersection of microbiome and material research: what can be achieved? N2 - Any surface in the environment acts as hotspot for microbial attachment and activity. These biofilms represent the interface between humans and the environment. While in the past biofilms were often seen as disturbance, we now start to understand the enormous potential of beneficial biofilms. They can be used in a broad range of applications and are sources for new microorganisms and traits. After all, biofilms represent a great example for a collaborative lifestyle. T2 - Bioeconomy Changemakers Festival, Hereon CY - Teltow, Germany DA - 14.03.2024 KW - Biofilm KW - Microbiome KW - Sustainability KW - Biosphere KW - Microplastics PY - 2024 AN - OPUS4-60202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oberbeckmann, Sonja T1 - The Microplastic Microbiome N2 - Microplastics represent man-made and newly emerging surfaces in our ecosystems, where they interact with microorganisms. The ecosystem in focus of this presentation will be the aquatic environment. It will be portrayed, which microorganisms use microplastics as a habitat, how environmental factors shape this colonization, and why the biodegradation of plastics in the ocean is an overall unlikely process. We will also discuss whether potentially pathogenic microorganisms use microplastics as a raft. Finally, possible adaptation mechanisms of plastic-colonizing microorganisms will be presented, such as the production of photoreactive molecules. The microplastic microbiome has a large potential to harbor so far unknown species with curious traits, representing an exciting research topic for the future. T2 - Geomicrobiological and Geochemical Colloquium, GFZ CY - Potsdam, Germany DA - 20.02.2024 KW - Microplastics KW - Microbiome KW - Biofilm PY - 2024 AN - OPUS4-60203 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - El-Athman, Rukeia A1 - Rädler, Jörg A1 - Löhmann, Oliver A1 - Ariza, Angela A1 - Muth, Thilo T1 - The BAM Data Store N2 - As a partner in several NFDI consortia, the Bundesanstalt für Materialforschung und -prüfung (BAM, German federal institute for materials science and testing) contributes to research data standardization efforts in various domains of materials science and engineering (MSE). To implement a central research data management (RDM) infrastructure that meets the requirements of MSE groups at BAM, we initiated the Data Store pilot project in 2021. The resulting infrastructure should enable researchers to digitally document research processes and store related data in a standardized and interoperable manner. As a software solution, we chose openBIS, an open-source framework that is increasingly being used for RDM in MSE communities. The pilot project was conducted for one year with five research groups across different organizational units and MSE disciplines. The main results are presented for the use case “nanoPlattform”. The group registered experimental steps and linked associated instruments and chemicals in the Data Store to ensure full traceability of data related to the synthesis of ~400 nanomaterials. The system also supported researchers in implementing RDM practices in their workflows, e.g., by automating data import and documentation and by integrating infrastructure for data analysis. Based on the promising results of the pilot phase, we will roll out the Data Store as the central RDM infrastructure of BAM starting in 2023. We further aim to develop openBIS plugins, metadata standards, and RDM workflows to contribute to the openBIS community and to foster RDM in MSE. T2 - 1st Conference on Research Data Infrastructure DA - 12.09.2023 KW - Research Data Infrastructure KW - Electronic Lab Notebook (ELN) KW - openBIS KW - Research Data Management PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-596032 DO - https://doi.org/10.52825/CoRDI.v1i.229 VL - 1 SP - 1 EP - 5 AN - OPUS4-59603 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Rühle, Bastian A1 - Bresch, Harald T1 - Competence Center nano@BAM Welcomes ISO/TC 229 Meeting in Berlin N2 - The Competence Center nano@BAM is presented. Examples directly related to the activities of the ISO Technical Committee TC 229 Nanotechnologies as well as BAM projects on nano reference measurement procedures, nano reference materials and nano reference data sets are showed. T2 - The 32nd ISO/TC 229 IEC/TC 113 JWG2 General Meeting CY - Berlin, Germany DA - 06.11.2023 KW - ISO/TC 229 Nanotechnologies KW - Nanoparticles KW - Nano@BAM KW - Reference materials KW - Reference data KW - Reference procedures PY - 2023 AN - OPUS4-58814 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Bresch, Harald T1 - VAMAS Regional Report Germany N2 - Regional standardisation activities and how VAMAS can help in any way to promote activities are reported. Activities related to organisational updates, government initiatives/priorities (especially related to Materials), details of any strategy documents publicly available, networks within Germany and how we engage are presented. T2 - Versailles Project on Advanced Materials and Standards (VAMAS) 48th Steering Committee Meeting CY - New Delhi, India DA - 09.10.2023 KW - VAMAS KW - Standardisation PY - 2023 UR - https://www.nplindia.org/index.php/amcsnzt_2023/ AN - OPUS4-58572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald A1 - Schwirn, K. A1 - Kuhlbusch, T. A1 - Völker, D. T1 - OECD TG 125 Particle size and size distribution of Nanomaterials N2 - This presentation was held in an OECD Webinar introducing the newly developed and published OECD TG 125 on particle size and size distribution. The presentation is explaining the structure if the TG 125 and addresses all included methods and methodologies in a short and understandable way for the broader public. The presentation includes sections about nano-particles and nano-fibres. T2 - Webinar Series on Testing and Assessment Methodologies CY - Online meeting DA - 07.02.2023 KW - Nano KW - Nanomaterials KW - OECD KW - Test guideline KW - Size PY - 2023 UR - https://www.oecd.org/chemicalsafety/nanomet/presentations-webinar-nanomaterials-particle-size-distribution-test-guideline-125.pdf AN - OPUS4-58447 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oberbeckmann, Sonja A1 - Scales, Brittan A1 - Hassenrück, Christiane A1 - Moldaenke, Lynn A1 - Rummel, Christoph A1 - Völkner, Corinna A1 - Hassa, Julia A1 - Rückert, Christian A1 - Rynek, Robby A1 - Busche, Tobias A1 - Kalinowski, Jörn A1 - Jahnke, Annika A1 - Schmitt-Jansen, Mechthild A1 - Wendt-Potthoff, Katrin T1 - Hunting for pigments in plastic biofilms from the Great Pacific Garbage Patch N2 - Each year, an immense amount of plastic debris enters marine ecosystems, much of which ends up in the Great Pacific Garbage Patch (GPGP). The plastic fragments are home to a diverse community of microorganisms, and while researchers have gained a better understanding of these marine plastic biofilms, we lack insights into the physiology and genomic potential of the bacteria that colonize them. Examining the lifestyle of plastic colonizers from the GPGP is particularly intriguing, as the high concentration of plastics in this accumulation zone might allow for a microbial adaptation to this unique man-made habitat. A range of pigmentation was observed in 67 isolated strains obtained directly from plastic pieces sampled from the GPGP surface water. Sequence comparison between the cultivated bacterial strains and the 16S rRNA gene amplicon dataset confirmed that most of the cultivates could also be captured through DNA-only methods. Whole genome analysis of four taxonomically diverse representatives revealed multiple carotenoid pathways, including those to produce less common glycosylated carotenoids, like sarcinaxanthin glucoside. Further, we identified a potentially new Rhodobacteraceae species containing a photosynthetic gene cluster (PGC). Absorption analysis confirmed the actual production of the carotenoids and bacteriochlorophyll a. Floating plastics represent a habitat with strong UV-light exposure, making the protection with antioxidant carotenoids as well as the ability to use light as an energy source highly beneficial traits for plastic colonizers. Our findings indicate, that the production of pigments is a common adaption mechanism for plastic-associated bacteria, and that plastic biofilms present a so far overlooked source of rare carotenoids and light-harvesting mechanisms. T2 - Annual Conference of The Association for General and Applied Microbiology (VAAM) CY - Göttingen, Germany DA - 10.09.2023 KW - Plastic biofilm KW - Phototrophic bacteria KW - Plastic pollution PY - 2023 AN - OPUS4-58443 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Even, Morgane A1 - Juritsch, Elevtheria A1 - Richter, Matthias T1 - Development of a procedure for the analysis of the emissions of VVOCs N2 - Several aspects were explored towards the standardization of a suitable procedure. The use of gaseous standards is necessary and a standard gas mixture containing 60 substances was successfully generated and employed for further investigations. The suitability of different chromatography columns was addressed: The use of PLOT (Porous Layer Open Tubular) columns is well suitable for VVOC analysis. The recoveries of the 60 analytes on several adsorbents and their combinations were determined: A combination of a graphitized carbon black and a carbon molecular sieve showed great results for all analytes. Carbon molecular sieves adsorb water which can impair the analysis. Different options such as purging, the use of a drying system or splitting were investigated for water removal. This contribution will present experimental results supporting the standardization of a method for VVOC analysis. T2 - Indoor Air conference CY - Kuopio, Finland DA - 12.06.2022 KW - Analytical method KW - EN 16516 KW - ISO 16000-6 KW - VVOCs PY - 2022 AN - OPUS4-55282 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bresch, Harald A1 - Schmidt, Alexandra A1 - Kämpf, K. A1 - Bachmann, V. A1 - Peters, T. A1 - Kuhlbusch, T. T1 - Test Guideline No. 125 - Nanomaterial Particle Size and Size Distribution of Nanomaterials N2 - The OECD Working Party on Manufactured Nanomaterials (WPMN) has actively worked towards understanding possible safety issues for manufactured nanomaterials and has contributed significantly to resolving these by developing Test Guidelines, Guidance Documents, Test Reports and other publications with the aim of a safe use of manufactured nanomaterials. To address the specific needs of manufactured nanomaterials, the OECD Test Guideline No. 110 “Particle Size Distribution/Fibre Length and Diameter Distributions” was identified as one of the test guidelines (TGs) to require an update. The current TG 110 (adopted in 1981) is only valid for particles and fibres with sizes above 250 nm. The WPMN prioritised to either update TG 110 to be applicable also to particles at the nanoscale or draft a new nanomaterial specific (TG). Eventually, it was decided to develop a new TG that covers the size range from 1 nm to 1000 nm, intended for particle size and particle size distribution measurements of nanomaterials. Paragraph 11 provides further justification on the need for such measurements for nanomaterials. This TG overlaps with TG 110 in the size range from 250 nm to 1000 nm. When measuring particulate or fibrous materials, the appropriate TG should be selected depending on the size range of particles tested. In line with TG 110, the new TG for nanomaterials includes separate parts for particles and fibres. For the part of this TG which addresses particles, several methods applicable to nanomaterials were reviewed and included to take into account developments since 1981 when the TG 110 was adopted. This TG includes the following methods: Atomic Force Microscopy (AFM), Centrifugal Liquid Sedimentation (CLS)/Analytical Ultracentrifugation (AUC), Dynamic Light Scattering (DLS), Differential Mobility Analysis System (DMAS), (Nano)Particle Tracking Analysis (PTA/NTA), Small Angle X-Ray Scattering (SAXS), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). The method Single Particle Inductively Coupled Plasma Mass Spectrometry (sp-ICP-MS) could not be sufficiently validated within the interlaboratory comparison (ILC) carried out for the different methods in this TG (see also paragraph 6 for further details on the ILC). Applicability of sp-ICP-MS is strongly limited to nanomaterials with high mass values in combination with a sufficiently high particle size. However, the general method ICP-MS is widely used and the sp-mode for the size measurement of specific nanomaterials was successfully performed in ILCs elsewhere. The method is therefore included in the Appendix Part C of this TG, which further details the limitations of sp-ICP-MS. For measuring the diameter and length of fibres, analysing images captured with electron microscopy is currently the only method available. This TG includes Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). To test the validity of this TG, an ILC was performed. Test materials were chosen to reflect a broad range of nanomaterial classes, e.g. metals, metal oxides, polymers and carbon materials. Where possible, well-characterised test materials were used. Additionally, the test materials were chosen to reflect a broad range of sizes representing the size range 1 nm to 1000 nm. Specifically for fibres, a broad range of aspect ratios was included (length/diameter of 3 to > 50). Some of the test materials used are commercially available and further references are given in the validation report of the ILC. Sample preparation for physical chemical characterisation is critical for all listed methods. Due to the differences between individual nanomaterials and due to the wide range of individual material properties it is impossible to have a generic protocol to obtain the best possible sample preparation for every nanomaterial. Therefore, a generic protocol on sample preparation is not part of this TG. Information on sample preparation is given in the paragraphs 25-29, 33, 34 and 39 for particles and in paragraphs 159) for fibres. Further information on sample preparation of nanomaterials for physical chemical characterisation can be found in the OECD Guidance on Sample Preparation and Dosimetry for the Safety Testing of Manufactured Nanomaterials and elsewhere. KW - Nano KW - Nanomaterial KW - Nanoparticle KW - OECD KW - Test guideline PY - 2022 DO - https://doi.org/10.1787/20745753 SP - 1 EP - 72 PB - Organisation for Economic Co-operation and Development CY - Paris AN - OPUS4-55191 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schühle, Florian A1 - Richter, Matthias T1 - Determination and classification of seven-day uptake rates for indoor air VOCs into tube type diffusive samplers with Tenax® TA N2 - Axial passive sampling of VOCs with Tenax® TA and thermal desorption GC-MS analysis is an accepted alternative to active sampling in occupational hygiene. In theory, the uptake into the passive sampler is only dependent on the diffusion coefficient of the analyte in air and the geometry of the sampler (ideal adsorption). For characterization, the uptake rate (UR) is used defined as the ratio of the mass adsorbed and the product of ambient concentration and exposure time. Various reported effective uptake rates (UR,eff) differ to an increasing degree from ideal values (UR,id) with increasing exposure doses (denominator of the given definition of UR), (Tolnai, 2001). In national and international standards, uptake rates are essentially sorted by the applicable exposure time, while detailed information about the corresponding concentration range is lacking. Moreover, especially for long exposure periods as applied in indoor air monitoring, the number of itemized substances is limited. Therefore it is the aim of this contribution to review and expand uptake rate data by comparison of literature and own laboratory values of assured quality. Passive samplers were exposed to nine single compound atmospheres of known concentrations for seven days. Concentrations were checked twice a day via active sampling.The determined uptake rates are considered accurate in terms of RSD and comparability to literature values and can be recommended for exposure times of seven days at 50 – 100 μg m-3 (approximately 100 – 300 ppm min). Seven-day uptake rates in ISO16017-2 and ASTM D6196 are not generally suited for this purpose, as has been exemplarily shown for benzene. Thus, it is crucial for optimization of the method to produce more reliable uptake rate data, including specific information about applicable exposure times and concentrations, which will be promoted in the course of this ongoing study. T2 - Healthy Buildings America 2021 CY - Online meeting DA - 18.01.2022 KW - Diffusive sampling KW - Volatile organic compounds (VOC) KW - Effective uptake rate PY - 2022 UR - https://www.isiaq.org/docs/HB2021America262.pdf AN - OPUS4-54372 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Even, Morgane A1 - Juritsch, Elevtheria A1 - Richter, Matthias T1 - Development of a procedure for the analysis of the emissions of VVOCs – Results of a research project N2 - Since 1997, the Committee for Health-related Evaluation of Building Products (AgBB) has been developing the basis for building regulations for protection against indoor health risks that may arise when building products are used. In 2009, the AgBB decided to include relevant VVOCs in the assessment procedure. The ISO 16000-6 (2021) states that the use of the thermal desorption gas chromatography technique is appropriate for VVOCs, if adaptations are considered. However, a suitable method for the trustworthy quantification of VVOC emissions from building products and in the indoor air is still missing. This webinar will present the results of a research project on the development of a procedure for VVOC analysis: • identification of the gaps towards standardization • investigations on gas standards and the suitability of chromatography columns • investigations on sorbent combinations and water management • validation of the method and screening of VVOC emissions from building products. T2 - Webinar organized by Umweltbundesamt and BAM CY - Online meeting DA - 13.09.2022 KW - Analytical method KW - EN 16516 KW - ISO 16000-6 KW - VVOCs PY - 2022 AN - OPUS4-55693 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilke, Olaf A1 - Seeger, Stefan A1 - Brödner, Doris A1 - Erdmann, Kerstin A1 - Rasch, Fabian T1 - Chemical characterization of ultra-fine particles released from laser printers N2 - 11 laser printers from 5 manufacturers were purchased in 2017 and tested for their UFP emissions. Size resolved sampling of the emitted particles was done with a 13 stage (30 nm to 10 µm) low pressure cascade impactor. The sampled particles were analysed for their chemical composition by thermal extraction (vaporization at 290°C) followed by GC-MS analysis. High boiling cyclic siloxanes (D10 to D16) were detected as constituents of UFP from laser printers. In comparison to measurements in 2008, aliphatic long-chain alkanes (C22 to C34) were detected additionally as chemical constituents of UFP from most of the tested printers and their amounts were higher than for cyclic siloxanes. Printers of one manufacturer showed very low UPF emissions compared to the other manufacturers. T2 - Indoor Air Conference 2022 CY - Kuopio, Finland DA - 12.06.2022 KW - UFP KW - Thermal extraction KW - Cascade impactor PY - 2022 AN - OPUS4-55107 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brandt, S. A1 - Brozowski, F. A1 - Horn, Wolfgang A1 - Plehn, W. A1 - Müller, B. T1 - New developments in odour testing: Adapter connects emission test chamber and funnel N2 - Healthy and energy efficient buildings must be free from disturbing odours. Odour emissions from building materials can be measured with the well-known and accepted standard ISO 16000-28 “Indoor air – Part 28: Determination of odour emissions from building products using test chambers”. For commonly used emission test chambers the sample air is collected in containers (bags) and presented to a group of panel members for the purpose of evaluating the odour. A standard sets requirements for the on-demand presentation in detail. These include the validation procedure for container materials, pre-treatment of bags, details on storage of filled bags and how to carry out the measurements. However, although these measures are proven in practice, incorrect measurements are still possible. Also errors can occur due to a very complex measurement procedure. So, there is a great need for research into how the odour samples are presented. The proposal planned to be presented will introduce a new development in sample provision by using an adapter which enables collection and provision of sample air without storage or transport of bags. The adapter is a sample container which is permanently positioned on the emission test chamber´s outlet and continuously filled with sample air flowing through it. The flow is briefly interrupted at the time when a sample is taken by a panel member for the test. The size of the container is sufficient to provide enough sample air for evaluation by at least one panel member via a funnel. Since sampling and presentation are technically connected, it means you can almost do away with storage or transportation and thus it can be presented almost unchanged to the panelmembers. The aim is to reduce measurement errors in the odour samples provision process and the improvement of measurement reproducibility. The paper presents the construction of the adapter as well as the results of emission and odour tests carried out so far. T2 - CLIMA 2022 The 14th REHVA HVAC World Congress CY - Rotterdam, The Netherlands DA - 22.05.2022 KW - Perceived Intensity KW - Emissionen KW - Geruch KW - Bauprodukte PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556192 DO - https://doi.org/10.34641/clima.2022.168 SP - 1 EP - 5 PB - TU Delft open CY - Delft, Niederlande AN - OPUS4-55619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grimmer, Christoph A1 - Strzelczyk, Rebecca A1 - Horn, Wolfgang A1 - Richter, Matthias T1 - Constant emitting reference material for material test procedures N2 - In industrialised countries more than 80% of the time is spent indoors. Products, such as building materials and furniture, emit volatile organic compounds (VOCs), which are therefore ubiquitous in indoor air. VOC in combination may, under certain environmental and occupational conditions, result in reported sensory irritation and health complaints. Emission concentrations can become further elevated in new or refurbished buildings where the rate of air exchange with fresh ambient air may be limited due to improved energy saving aspects. A healthy indoor environment can be achieved by controlling the sources and by eliminating or limiting the release of harmful substances into the air. One way is to use (building) materials proved to be low emitting. Meanwhile, a worldwide network of professional commercial and non-commercial laboratories performing emission tests for the evaluation of products for interior use has been established. Therefore, comparability of test results must be ensured. A laboratory’s proficiency can be proven by internal and external validation measures that both include the application of suitable emission reference materials (ERM). For the emission test chamber procedure according to EN 16516, no artificial ERM is commercially available. The EU-funded EMPIR project MetrIAQ aims to fill this gap by developing new and improved ERMs. The goal is to obtain a material with a reproducible and temporally constant compound release (less than 10% variability over 14 days). Different approaches, such as the impregnation of porous materials, are being tested. The generation as well as results of the most promising materials will be presented. T2 - Airmon 2022 CY - Bristol, UK DA - 07.11.2022 KW - Emission reference materials KW - Emission test chamber procedure KW - Quality assurance KW - Reference material PY - 2022 AN - OPUS4-56575 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musyanovych, A. A1 - Grimmer, Christoph A1 - Sadak, A. E. A1 - Heßling, L. A1 - Bilsel, M. A1 - Horn, Wolfgang A1 - Richter, Matthias T1 - Polymeric Capsules with VOCs for Controlled Emission N2 - Micro-(nano-)encapsulation technology involves building of a barrier between the core and the environment and offers a number of benefits to preserve the functional and physicochemical properties of core material. Tremendous progress has been made in synthesizing well-defined capsules to achieve desired properties such as particle size, chemical composition, and controlled release of the payload. Encapsulation of volatile organic compounds (VOCs) that could evaporate with a defined rate is of immense interest for application in emission reference materials (ERM). These are urgently needed for quality assurance and quality control purposes (QA/QC) required by test standards for the determination of chemical emissions of construction and other materials for interior use. As such ERMs are hardly available on the market, the EU-funded EMPIR project MetrIAQ [1] was started to fill this gap by developing a material with temporally constant emission of VOCs typically found in indoor air. Different capsules in a size range between 5 and 50 μm were synthesized through an interfacial polyaddition/polycondensation reaction in direct (water-in-oil) system. As VOC several types of hydrophobic liquid materials were used. After synthesis, the morphology and physicochemical properties of capsules were characterized by electron microscopy, FTIR and DSC/TGA. An encapsulation efficiency up to 90% could be reached. The emission kinetic of volatile agents was studied in emission test chambers at 23 °C and 50% RH for 14 days. First results indicate that variation of the cross-linking grade of the shell material is one important parameter to adjust the desired emission rate. The overall aim is to achieve a consistent emission profile that decreases by less than 10 % over a target period of at least 14 days. T2 - 36th European Colloid & Interface Society Conference CY - Chania, Crete, Greece DA - 04.09.2022 KW - Capsules KW - Volatile organic compound KW - Polymer KW - Material emissions KW - Reference materials PY - 2022 AN - OPUS4-56039 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musyanovych, A. A1 - Grimmer, Christoph A1 - Sadak, A. E. A1 - Heßling, L. A1 - Bilsel, M. A1 - Horn, Wolfgang A1 - Richter, Matthias T1 - Polymeric Capsules with VOCs for Controlled Emission N2 - Micro-(nano-)encapsulation technology involves building a barrier between the core and the environment and offers several benefits to preserve the functional and physicochemical properties of core material. Tremendous progress has been made in synthesizing well-defined capsules to achieve desired properties such as particle size, chemical composition, and controlled release of loaded compounds. Encapsulation of volatile organic compounds (VOCs) that could evaporate with a defined rate is of immense interest for application in emission reference materials (ERM). These are urgently needed for quality assurance and quality control purposes (QA/QC) required by test standards for the determination of chemical emissions of construction and other materials for interior use. As such ERMs are hardly available on the market, the EU-funded EMPIR project MetrIAQ was started to fill this gap by developing a material with temporally constant emission of VOCs typically found in indoor air. T2 - 36th European Colloid & Interface Society Conference CY - Chania, Crete, Greece DA - 04.09.2022 KW - Capsules KW - Volatile organic compounds KW - Material emissions KW - QA/QC KW - Reference materials PY - 2022 AN - OPUS4-55917 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brandt, S. A1 - Brozowski, F. A1 - Horn, Wolfgang A1 - Plehn, W. A1 - Müller, B. T1 - Odour Emissions from Building Products Simplifying the Evaluation of Perceived Intensity N2 - One criterion to evaluate the odour of a sample is perceived intensity П which is evaluated with the aid of a comparative scale. The procedure is well accepted but also time consuming and extensive. The study should help simplify the testing procedure by asking the panel members to only indicate whether a sample is perceived as less to equally intense or of greater intensity in comparison to a given acetone concentration of 7 pi on the comparative scale. In Germany a value of 7 pi is required for products to be suitable for the indoor use. The results show that the simplified test is basically suitable. T2 - Indoor Air Conference 2022 “Healthy people in healthy indoor environment” CY - Kuopio, Finland DA - 12.06.2022 KW - Perceived Intensity KW - Emissions KW - Chamber test KW - Odour KW - VOC KW - Building product PY - 2022 AN - OPUS4-55623 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilke, Olaf A1 - Seeger, Stefan A1 - Brödner, Doris A1 - Erdmann, Kerstin A1 - Rasch, Fabian T1 - Chemical characterization of ultra-fine particles released from laser printers N2 - 11 laser printers from 5 manufacturers were purchased in 2017 and tested for their UFP emissions. Size resolved sampling of the emitted particles was done with a 13 stage (30 nm to 10 µm) low pressure cascade impactor. The sampled particles were analysed for their chemical composition by thermal extraction (vaporization at 290°C) followed by GC-MS analysis. High boiling cyclic siloxanes (D10 to D16) were detected as constituents of UFP from laser printers. In comparison to measurements in 2008, aliphatic long-chain alkanes (C22 to C34) were detected additionally as chemical constituents of UFP from most of the tested printers and their amounts were higher than for cyclic siloxanes. Printers of one manufacturer showed very low UPF emissions compared to the other manufacturers. T2 - Indoor Air Conference 2022 CY - Kuopio, Finland DA - 12.06.2022 KW - UFP KW - Thermal extraction KW - Cascade impactor PY - 2022 SP - 1 EP - 4 AN - OPUS4-55106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mrkwitschka, Paul A1 - Abram, Sarah-Luise A1 - Thünemann, Andreas A1 - Rühle, Bastian A1 - Radnik, Jörg A1 - Bresch, Harald A1 - Resch-Genger, Ute A1 - Hodoroaba, Vasile-Dan T1 - The Role of Electron Microscopy in the Development of Monodisperse Cubic Iron Oxide Nanoparticles as Certified Reference Material for Size and Shape N2 - BAM is currently building up a platform of novel nanoRMs relying on iron oxide nanoparticles of different shape, size and surface chemistry. Iron oxide was chosen as a core material because of its relevance to the material and life sciences. As a first candidate of this series, we present cubic iron oxide nanoparticles with a nominal edge length of 8 nm. These particles were synthesized by thermal decomposition of iron oleate in high boiling organic solvents adapting well-known literature procedures. After dilution to a concentration suitable for electron microscopy (TEM and SEM) as well as for small-angle X-ray scattering (SAXS) measurements, the candidate nanoRM was bottled and assessed for homogeneity and stability by both methods following the guidelines of ISO 17034 and ISO Guide 35. The particle sizes obtained by both STEM-in-SEM and TEM are in excellent agreement with a minimum Feret of 8.3 nm ± 0.7 nm. The aspect ratio (AR) of the iron oxide cubes were extracted from the images as the ratio of minimum Feret to Feret resulting in an AR of 1.18 for TEM to 1.25 for SEM. Alternatively, a rectangular bounding box was fitted originating from the minimum Feret and the longest distance through the particle in perpendicular direction. This led to AR values of 1.05 for TEM and 1.12 for SEM, respectively. The results confirm the almost ideal cubic shape. KW - Reference nanoparticles KW - Iron oxide KW - Cubical shape KW - Electron microscopy KW - SAXS KW - Nano CRM KW - Size PY - 2022 DO - https://doi.org/10.1017/S1431927622003610 SN - 1435-8115 VL - 28 IS - Suppl. 1 SP - 802 EP - 805 PB - Cambridge University Press AN - OPUS4-55599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Breitenbach, Romy A1 - Gerrits, Ruben A1 - Dementyeva, Polina A1 - Knabe, Nicole A1 - Schumacher, Julia A1 - Feldmann, Ines A1 - Radnik, Jörg A1 - Ryo, M. A1 - Gorbushina, Anna T1 - Data for "The role of extracellular polymeric substances of fungal biofilms in mineral attachment and weathering" N2 - Data for the publication "The role of extracellular polymeric substances of fungal biofilms in mineral attachment and weathering" (https://doi.org/10.1038/s41529-022-00253-1). It includes: - The Summary of the EPS concentration, EPS sugar components and EPS linkages. - The Summary of the XPS analysis of freeze-dried biofilm samples of all strains. - The Summary of the pH, Mg, SI and Fe concentration, biomass and olivine dissolution rate for each time point of all dissolution experiments. KW - Biofilms PY - 2022 DO - https://doi.org/10.26272/opus4-54901 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-54901 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tang, Chi-Long A1 - Seeger, Stefan T1 - Proposal of a standard test method for the quantification of particulate matter during 3D printing and the systematic ranking of filament materials N2 - The diversity of fused filament fabrication (FFF) filaments continues to grow rapidly as the popularity of FFF-3D desktop printers for the use as home fabrication devices has been greatly increased in the past decade. Potential harmful emissions and associated health risks when operating indoors have induced many emission studies. However, the lack of standardization of measurements impeded an objectifiable comparison of research findings. Therefore, we designed a chamber-based standard method, i.e., the strand printing method (SPM), which provides a standardized printing procedure and quantifies systematically the particle emission released from individual FFF-3D filaments under controlled conditions. Forty-four marketable filament products were tested. The total number of emitted particles (TP) varied by approximately four orders of magnitude (1E9 ≤ TP ≤ 1E13), indicating that origin of polymers, manufacturer-specific additives, and undeclared impurities have a strong influence. Our results suggest that TP characterizes an individual filament product and particle emissions cannot be categorized by the polymer type (e.g., PLA or ABS) alone. The user's choice of a filament product is therefore decisive for the exposure to released particles during operation. Thus, choosing a filament product awarded for low emissions seems to be an easily achievable preemptive measure to prevent health hazards. T2 - 11th International Aerosol Conference CY - Athens, Greece DA - 04.09.2022 KW - Ultrafine particles KW - FFF-3D-Printer KW - Indoor emission KW - Emission test chamber KW - Test method KW - Exposure risk PY - 2022 AN - OPUS4-55666 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völzke, Jule L. A1 - Hodjat Shamami, Parya A1 - Gawlitza, Kornelia A1 - Feldmann, Ines A1 - Zimathies, Annett A1 - Meyer, Klas A1 - Weller, Michael G. T1 - Corundum as a novel affinity platform for the isolation of human IgG from plasma N2 - Nonporous corundum powder was functionalized covalently with protein binders to isolate and enrich specific proteins from complex matrices.The common crosslinker glutaraldehyde was compared with a hyperbranched polyglycerol (PG) of around 10 kDa. The latter was oxidized with periodate to generate aldehyde groups that can covalently react with the amines of the surface and the amino groups from the protein via a reductive amination process. The amount of bound protein was quantified via aromatic amino acid analysis (AAAA). As a proof of concept, IgG was extracted with protein A from crude human plasma. The advantages of corundum include the very low price, extremely high physical and chemical stability, pressure resistance, favorable binding kinetics, convenient handling, and flexible application. T2 - Adlershofer Forschungsforum 2022 CY - Berlin, Germany DA - 11.11.2022 KW - Affinity support KW - Affinity chromatography KW - Affinity extraction KW - Phosphonic acids KW - Polyglycerol KW - Reductive amination KW - Amino acid analysis KW - Tyrosine KW - Protein quantification KW - SDS-PAGE KW - Antibodies KW - Antibody purification KW - Downstream processing KW - Bovine serum albumin KW - BSA KW - Protein a KW - TEM KW - ESEM KW - Aluminum oxide KW - Sapphire KW - Human plasma KW - Protein immobilization KW - Protein hydrolysis KW - Glutaraldehyde KW - Aromatic amino acid analysis AAAA PY - 2022 AN - OPUS4-56154 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Völzke, Jule L. A1 - Hodjat Shamami, Parya A1 - Gawlitza, Kornelia A1 - Feldmann, Ines A1 - Zimathies, Annett A1 - Weller, Michael G. T1 - High-purity corundum as support for affinity extractions from complex samples N2 - Nonporous corundum powder, known as an abrasive material in the industry, was functionalized covalently with protein binders to isolate and enrich specific proteins from complex matrices. The materials based on corundum were characterized by TEM, ESEM, BET, DLS, and zeta potential measurements. The strong Al-O-P bonds between the corundum surface and amino phosphonic acids are used to introduce functional groups for further conjugations. The common cross-linker glutaraldehyde was compared with a hyperbranched polyglycerol (PG) of around 10 kDa. The latter is oxidized with periodate to generate aldehyde groups that can covalently react with the amines of the surface and the amino groups from the protein via a reductive amination process. The amount of bound protein was quantified via aromatic amino acid analysis (AAAA). This work shows that oxidized polyglycerol can be used as an alternative to glutaraldehyde. With polyglycerol, more of the model protein bovine serum albumin (BSA) could be attached to the surface under the same conditions, and lower nonspecific binding (NSB) was observed. As a proof of concept, IgG was extracted with protein A from crude human plasma. The purity of the product was examined by SDS-PAGE. A binding capacity of 1.8 mg IgG per g of corundum powder was achieved. The advantages of corundum are the very low price, extremely high physical and chemical stability, pressure resistance, favorable binding kinetics, and flexible application. KW - Protein KW - Bioseparation KW - Purification KW - Immunoprecipitation KW - Affinity chromatography KW - Polyglycerol KW - Glutaraldehyde KW - Linker KW - Bioconjugation KW - Self-assembled monolayer (SAM) KW - Periodate oxidation KW - Reductive amination KW - Antibodies KW - Igg KW - Immunoglobulins KW - Carrier KW - Solid phase KW - Hyperbranched polymer KW - Aromatic amino acid analysis aaaa PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555142 DO - https://doi.org/10.20944/preprints202208.0004.v1 SN - 2310-287X SP - 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-55514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald T1 - Nanomaterial characterisation - The long way to standardisation N2 - In 1981 the OECD published the Test Guideline on Particle size and size distribution. This TG is still a valid document for the measurement of particles all over the world. When nanomaterials gained importance, ISO set up a technical commitee for Nanotechnologies in 2005 and the OECD followed this step in 2006 with the Working Party on Manufactured Nanomaterials. In the following years ISO and OECD published several documents about nanomaterials and the systematisation developed. In 2017 it was finally clear that nanomaterials need to be adressed in another way than chemicals and in 2020 ECHA revised the REACH-Annexes accordingly and included nanomaterials. Unfortunately there is a little problem with this: Only a few applicable test guidelines exit for the measurement of the nanomaterials. Several test guidelines date from 1981 and do not address nanomaterials. The logical next step for the OECD would be to publish a series of test guidelines which are indeed currently prepared and will be shown in this talk. Finally there is an additional need for the future of NM standardisation: Digitalisation. T2 - Bilateral workshop with Uni Bermingham CY - Online meeting DA - 10.03.2021 KW - Nano KW - Standardisation KW - Test guideline KW - OECD KW - Nanomaterial PY - 2021 AN - OPUS4-53822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Schmidt, Alexandra A1 - Bresch, Harald A1 - Kämpf, K. A1 - Bachmann, V. A1 - Peters, T. A1 - Kuhlbusch, T. T1 - Development of a specific OECD Test Guideline on Particle Size and Particle Size Distribution of Nanomaterials N2 - In this research project, a new OECD Test Guideline (TG) for the determination of “Particle Size and Particle Size Distributions of Nanomaterials” was developed as the existing OECD TG 110 is considered to be outdated in terms of applicable size range (not covering sizes <200 nm) and methods. By its scope with an applicable size range from 1 to 1000 nm the new Test Guideline (TG PSD) covers the whole nanoscale. The TG PSD is applicable for particulate and fibrous nanomaterials. The prescribed, pairwise measurement of fibre diameter and length in the TG PSD allows for the first time to differen-tiate fibres with regard to their size-dependent hazard properties. Measurement instructions for each included method were validated within two separated interlaboratory comparisons, as a distinction between near spherical particles and fibres when applying the methods has to be made. Besides information on content and structure of the TG PSD, this final report outlines essential steps, considerations and organisational aspects during the development of the TG. Insights into the selec-tion, preparation and prevalidation of test materials used in the interlaboratory comparison are given. Finally, main results of the interlaboratory comparisons and their impacts on the TG PSD are pre-sented. N2 - Im Rahmen des Forschungsprojekts wurde eine neue OECD-Prüfrichtlinie (TG) für die Bestimmung von Partikelgrößen und Partikelgrößenverteilungen von Nanomaterialien entwickelt, da die existie-rende OECD TG 110 zur Bestimmung von Partikelgrößen in Bezug auf den anwendbaren Größenbe-reich und die gegebenen Methoden veraltet ist bzw. den Nanometerbereich < 200 nm nicht abdeckt. Mit ihrem Anwendungsbereich von 1 bis 1000 nm deckt die neue Prüfrichtlinie (TG PSD) die gesamte Nanoskala ab. Die TG PSD ist für partikel- und faserförmige Nanomaterialien anwendbar. Durch die, in der TG PSD vorgeschriebene, paarweise Messung von Faserdurchmesser und -länge ermöglicht diese TG zum ersten Mal Fasern hinsichtlich ihrer größenabhängigen Gefahrstoffeigenschaften zu unter-scheiden. Die Messanweisungen aller enthaltenen Methoden wurden im Rahmen von zwei getrennten Ringversuchen validiert, da bei der Anwendung der Methoden eine Unterscheidung zwischen Parti-keln und Fasern gemacht werden muss. Neben Angaben zum Inhalt und Struktur der TG PSD, befasst sich der vorliegende Abschlussbericht mit den wesentlichen Schritten, Überlegungen und organisatorischen Aspekten bei der Entwicklung der Prüfrichtlinie. Darüber hinaus werden Einblicke in die Auswahl, Vorbereitung und Prävalidierung der im Ringversuch verwendeten Testmaterialien gegeben. Schließlich werden die wichtigsten Ergeb-nisse aus den Ringversuchen und ihre Auswirkungen auf die TG PSD vorgestellt. KW - Nano KW - OECD KW - Particle size distribution KW - Testguideline KW - Nanoparticle PY - 2021 VL - 2021 SP - 1 EP - 47 PB - German Environment Agency CY - Dessau AN - OPUS4-54021 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bresch, Harald A1 - Schmidt, Alexandra A1 - Kämpf, K. A1 - Bachmann, V. A1 - Peters, T. A1 - Kuhlbusch, T. T1 - Draft OECD Test Guideline for the Testing of Chemicals - Particle Size and Particle Size Distribution of Nanomaterials N2 - Final Draft of the OECD Test Guideline for Particle Size and Particle Size Distribution of Nanomaterials. The OECD Working Party on Manufactured Nanomaterials (WPMN) has actively worked towards understanding possible safety issues for manufactured nanomaterials and has contributed significantly to resolving these by developing Test Guidelines, Guidance Documents, Test Reports and other publications with the aim of a safe use of manufactured nanomaterials. The OECD website (www.oecd.org/science/nanosafety) and the referenced publications contain more background information. Among others, the OECD Test Guideline “Particle Size Distribution/Fibre Length and Diameter Distributions” (TG 110, adopted in 1981) was identified to require an update to address the specific needs of manufactured nanomaterials as the TG 110 is currently only valid for particles and fibres with sizes above 250 nm. The WPMN prioritised to either update TG 110 to be applicable also to particles at the nanoscale or draft a new nanomaterial specific Test Guideline (TG). Eventually, it was decided to develop a new TG for particle size and particle size distribution measurements of nanomaterials covering the size range from 1 nm to 1000 nm for further justification. This TG overlaps with TG 110 in the size range from 250 nm to 1000 nm. When measuring particulate or fibrous materials, the appropriate TG should be selected depending on the size range of particles tested. In line with TG 110, the new TG for nanomaterials includes separate parts for particles and fibres. For the part of this TG which addresses particles, several methods applicable to nanomaterials were reviewed and included to take into account developments since 1981 when the TG110 was adopted. This TG includes the following methods: Atomic Force Microscopy (AFM), Centrifugal Liquid Sedimentation (CLS)/Analytical Ultracentrifugation (AUC), Dynamic Light Scattering (DLS), Differential Mobility Analysis System (DMAS), (Nano)Particle Tracking Analysis (PTA/NTA), Small Angle X-Ray Scattering (SAXS), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). For measuring the diameter and length of fibres, analysing images captured with electron microscopy is currently the only method available. This TG includes Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). To test the validity of this TG, an ILC was performed. Test materials were chosen to reflect a broad 68 range of nanomaterial classes, e.g. metals, metal oxides, polymers and carbon materials. Where possible, well-characterised test materials were used. Additionally, the test materials were chosen, so that they reflect a broad range of sizes representing the size range 1 nm to 1000 nm and finally, for fibres only, aspect ratios from length/diameter of 3 to > 50. KW - Nano KW - OECD KW - Test guideline KW - Nanomaterial KW - Nanoparticle PY - 2021 UR - https://www.oecd.org/chemicalsafety/testing/draft-test-guideline-particle-size-distribution-nanomaterials.pdf SP - 1 PB - Organisation for Economic Co-operation and Development CY - Paris AN - OPUS4-53828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Even, Morgane A1 - Juritsch, Elevtheria A1 - Richter, Matthias T1 - Development of an efficient procedure for the analysis of the emissions of very volatile organic compounds (VVOCs) in emission measurements from construction products and in the indoor air N2 - The ISO 16000-6 standard describes a method for the determination of volatile organic compounds (VOCs) in indoor and test chamber air by sorbent-based active sampling, thermal desorption and gas chromatography coupled with mass spectrometry (GC/MS). It also gives directions to adapt this methodology to very volatile organic compounds (VVOCs). Indeed, toxicologically based guideline values are being implemented for these compounds and it becomes necessary to measure them. But a comprehensive and robust measurement method is lacking. Investigations on the use of gaseous standards, the suitability of chromatography columns, the suitable sorbent combinations and the water removal are required. The talk will highlight the points that need to be explored towards the standardisation of a suitable procedure and provide appropriate preliminary results. T2 - Emissions and Odours from Materials 2021, Certech CY - Online meeting DA - 07.10.2021 KW - VVOCs KW - Analytical method KW - ISO 16000-6 KW - Thermal desorption KW - Gas chromatography PY - 2021 AN - OPUS4-53485 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abram, Sarah-Luise A1 - Mrkwitschka, Paul A1 - Prinz, Carsten A1 - Rühle, Bastian A1 - Haase, Oskar A1 - Kuchenbecker, Petra A1 - Löhmann, Oliver A1 - Hodoroaba, Vasile-Dan A1 - Bresch, Harald A1 - Resch-Genger, Ute T1 - Iron oxide nanoparticles as a reference material candidate for particle size measurements N2 - This poster presentation covers the development of iron oxide nanoparticles as reference material candidate in the context of the project "Nanoplattform". T2 - EMRS Spring Meeting CY - Online meeting DA - 31.05.2021 KW - Iron oxide nanoparticles KW - Reference material KW - Particle size KW - Transmission electron microscopy KW - Small angle x-ray scattering PY - 2021 AN - OPUS4-52773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Seneschal-Merz, Karine A1 - Bücker, Michael A1 - Wachtendorf, Volker A1 - Heidrich, Christa A1 - Sander, Christoph T1 - New UV-protective glazing for the conservation of cultural assets N2 - For centuries, churches, secular buildings and museums have been furnished with valuable works of art. Many works of art are UV- and light-sensitive. It is well known that especially UV radiation causes damage and discoloration in paintings, textiles, plastics, wood and other materials. In particular, the wavelengths between 280 and 410 nm cause color changes, embrittlement or destruction of e.g. plastics over time. Therefore, strongly UV-absorbing glasses are advantageous for architecture and are necessary for the protection of cultural assets. As restorers in all disciplines become more and more aware, the demands placed on buildings and their furnishings in terms of climate are becoming increasingly detailed and precise. The aim in each case is to preserve the valuable artwork. For some years now, the industry has been offering the protection of cultural objects by installing special UV-protective glasses. Currently, UV protection for church buildings is realized by laminated safety glass equipped with appropriate UV-protective plastic films. Technically, this always means a second pane of glass in front of the windows, which is installed outside the building. This creates climatic gaps that are difficult to control and deterioration due to ageing effects can be expected. At the same time, this protective glazing is not invisible and has a considerable aesthetic influence on the interior and exterior appearance of the building. Meanwhile, the preservation of historical monuments accepts such aesthetic cuts on buildings in order to protect the artwork in the interior from UV light. To this day, however, the long-term durability of UV protection provided by inserted plastic films is still controversial. To date the only available alternative on the market is a mouth-blown UV protection glass which uses a so-called overlay to provide UV protection. This shows that UV protection can also be achieved by glasses without plastic films thus realizing an exclusive inorganic protection which normally is more stable than a polymeric one. So far there are not enough studies to prove long-term durability. The aim of this project is to provide existing glazing or new glazing to be created with a highly transparent layer that ensures this UV-protective filter function below 400 nm. The glass coating is to be applied to the glass over a large area and fired into the surface like a classic ceramic enamel paint with the same technics. In addition, it should be long-term durable in its function. It means, that the glass has to be fused at temperatures below 630 °C during the firing process, its chemical durability has to be high, its coefficient of thermal expansion has to be as close as the one of the substrate (usually float glass) and the glass has to absorb the UV-radiation within a thin thickness (thinner as 100 µm). In this project, the long-term durability of commercial UV-protective glasses is examined. New low melting glasses containing UV-absorbing ions are being developed. Their UV-absorption as a thin layer is analyzed as well as their chemical durability and their thermal properties. We are grateful to BMWI for the financial support in the frame of the Central Innovation Programme for SMEs (ZIM). T2 - HVG-DGG: 94. Glastechnische Tagung CY - Online meeting DA - 10.05.2021 KW - Glass KW - Low melting KW - Chemical durability KW - Weathering tests KW - Aging test KW - UV absorption KW - UV protection KW - Architecture KW - Optical properties PY - 2021 AN - OPUS4-52648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brandt, S. A1 - Brozowski, F. A1 - Plehn, W. A1 - Horn, Wolfgang A1 - Müller, B. T1 - Further Development of Odour Testing of Building Products – Sample Presentation and Evaluation of Perceived Intensity N2 - Indoor air quality is affected by the emission of volatile organic compounds (VOC) or the odour from building products. Odours can be measured by applying the standard ISO 16000-28:2020. In the study presented here proposals for further technical development of the ISO method are presented. The sampling procedure and evaluation method of the perceived intensity are investigated in particular because they have a major influence on reproducibility of measurement results. T2 - 17th International Conference HEALTHY BUILDINGS EUROPE 2021 CY - Online meeting DA - 21.06.2021 KW - Geruchsmessung KW - Emissionen KW - Bauprodukte KW - VOC KW - Perceived Intensity PY - 2021 SN - 978-82-536-1728-2 VL - 2021 SP - 1 EP - 4 PB - SINTEF Books CY - Oslo, Norwegen AN - OPUS4-54574 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Even, Morgane A1 - Wilke, Olaf A1 - Kalus, Sabine A1 - Schultes, P. A1 - Hutzler, C. A1 - Luch, A. T1 - Formaldehyde Emissions from Wooden Toys: Method Comparison and Exposure Assessment N2 - Formaldehyde is considered as carcinogenic and is emitted from particleboards and plywood used in toy manufacturing. Currently, the flask method is frequently used in Europe for market surveillance purposes to assess formaldehyde release from toys, but its concordance to levels measured in emission test chambers is poor. Surveillance laboratories are unable to afford laborious and expensive emission chamber testing to comply with a new amendment of the European Toy Directive; they need an alternative method that can provide reliable results. Therefore, the application of miniaturised emission test chambers was tested. Comparisons between a 1 m3 emission test chamber and 44 mL microchambers with two particleboards over 28 days and between a 24 L desiccator chamber and the microchambers with three puzzle samples over 10 days resulted in a correlation coefficient r2 of 0.834 for formaldehyde at steady state. The correlation between the results obtained in microchambers vs. flask showed a high variability over 10 samples (r2: 0.145), thereby demonstrating the error-proneness of the flask method in comparison to methods carried out under ambient parameters. An exposure assessment was also performed for three toy puzzles: indoor formaldehyde concentrations caused by puzzles were not negligible (up to 8 μg/m3), especially when more conservative exposure scenarios were considered. T2 - OE conference CY - Online meeting DA - 23.03.2021 KW - Formaldehyde KW - Wooden toys PY - 2021 AN - OPUS4-52330 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilke, Olaf T1 - Contaminants of Emerging Concern from Materials and Products: Measurement and Evaluation N2 - Test chamber measurements are an important tool to improve indoor air quality and occupational safety. Test chamber measurements are possible for a wide range of materials, products and technologies. Determination of concerning contaminants is important to ensure good indoor air quality. The detection of concerning contaminants depends on the approriate sampling and analysis. T2 - Webinar BAM-University of Birmingham CY - Online meeting DA - 24.02.2021 KW - Emerging Contaminants KW - Emission Test Chamber KW - Thermal Extraction KW - Thermal Desorption PY - 2021 AN - OPUS4-52262 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilke, Olaf T1 - Harmonised test standard EN 16516 - common approach for all building products for interiors N2 - The presentation gives general information about the European Standard EN 16516 “Construction products – Assessment of release of dangerous substances – Determination of emissions into indoor air”. This test standard was developed based on the mandate M/366 of the European commission and is a horizontal reference method for the determination of volatile organic compounds (VOC) from different classes of construction (building) products. Specific test conditions are to be selected by the product TCs (technical committees) in a way that a product is tested under its intended condition of use. The test is based on the use of emission test chambers which are operated at constant air change rate and climate (23°C, 50 % r.h.) over 28 days. The standard defines the conditions and requirements for the measurement including loading factor, air change rate, sampling, analysis and calculation of emission rates of the substances. A 30 m³ reference room is described which is used to calculate air concentrations from the determined emission rates. The standard EN 16516 enables the evaluation of construction products regarding their emissions into indoor air under defined and comparable conditions. The evaluation includes the determination of identified target compounds, non-identified target compounds, volatile carcinogenic compounds and the sum values TVOC, TSVOC and R. T2 - UBA Conference - Limiting health impacts of construction products regarding VOC CY - Online meeting DA - 20.04.2021 KW - Building products KW - EN 16516 KW - Emisson testing KW - Construction products PY - 2021 AN - OPUS4-58079 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Asbach, C. A1 - Held, A. A1 - Kiendler-Scharr, A. A1 - Scheuch, G. A1 - Schmid, H.-J. A1 - Schmitt, S. A1 - Schumacher, S. A1 - Wehner, B. A1 - Weingartner, E. A1 - Weinzierl, B. A1 - Bresch, Harald A1 - Seeger, Stefan A1 - u.a., T1 - Position paper of the Gesellschaft für Aerosolforschung on understanding the role of aerosol particles in SARS-CoV-2 infection N2 - Many studies have already shown that viruses can spread via aerosol particles. An aerosol is a mixture of air with solid or liquid particles dispersed in it. To understand the role of aerosol particles as a transmission path of SARS-CoV-2, knowledge of the different processes in an Aerosol is therefore of particular importance. With this paper, GAeF would like to contribute to a better understanding of the term “aerosol” and the relevant aerosol processes. In the context of this paper only the essential basics will be discussed. For a deeper understanding of the partly complex processes, please refer to the literature mentioned at the end of the paper. The paper summarises a large number of studies on the formation of virus-laden aerosol particles and their spread. Based on this, it can be concluded that exhaled aerosol particles may play a prominent role in the spread of viruses in the corona pandemic. Finally, this paper discusses possible measures to reduce the spread of aerosol particles. The measures discussed are based on the current public debate including ventilation, air purifiers, HVAC systems and masks. Advice is given on the correct and sensible use of these measures. An aerosol is always dynamic, as particles are newly formed, transported in or with the air, removed from the air or change in the airborne state. Aerosol particles have sizes between approx. 0.001 and several 100 micrometres (and not < 5 μm as currently defined in many publications) and spread relatively quickly with air currents, even over longer distances. Larger aerosol particles sink to the ground, depending on their size and density, while small aerosol particles can remain in the air for a very long time (see Section 3). Every person emits liquid aerosol particles of various sizes through breathing and when speaking, coughing and sneezing (see Section 4). If a person is infected with a virus, such as SARS-CoV-2, these aerosol particles can contain viruses that can be released into the air and inhaled by other people. SARS-CoV-2 has a size of 0.06 to 0.14 micrometres, but the exhaled liquid aerosol particles are larger. The liquid aerosol particles can shrink by evaporation, depending on the ambient conditions (see Section 3.3). Particle size is relevant for particle transport and particle separation. The highest risk of infection exists in closed indoor spaces, as aerosol particles can accumulate there. Here in particular, appropriate measures must be taken to reduce the concentration of aerosol particles (see Section 5). Against the background of aerosol science, the GAeF classifies the current measures to contain the pandemic as follows: • In principle, no measure can work on its own! According to the current state of knowledge, the interaction of the most varied measures is the best way to minimise the risk of infection. • Keeping distance is important, because with increasing distance, directly exhaled viruses are diluted and the probability of infection decreases. The often prescribed minimum distance can be used as a guide, but it should be increased and supplemented by other measures (see below), especially for longer meetings and also indoors with reduced air movement. • Masks help to filter some of the exhaled particles (and viruses). This reduces the concentration of exhaled particles (and viruses) in a room and thus the risk of infection. It should be noted here that the exhaled aerosol particles are relatively large due to adhering moisture and can therefore also be efficiently retained by simple masks. However, since these particles shrink with longer dwell time in the room air, simple mouth-nose masks are less efficient for self-protection. Respiratory masks are required for this purpose, which show a high degree of separation even for fine particles, e.g. of classes FFP2, N95 or KN95. These are efficient for both self-protection and protection of others unless they have an exhalation valve. Masks with an exhalation valve, on the other hand, are only for self-protection and therefore contradict the solidarity concept that fellow human beings are protected by collective mask wearing. Face shields which are used without additional masks are largely useless with regard t• aerosol particles, as the air with particles (and viruses) flows unfiltered around the shields. In everyday clinical practice, facial shields are worn in addition to masks to prevent droplet infection via the mucous membranes of the eyes. Mobile or permanently installed Plexiglas barriers are also largely ineffective against the spread of aerosols indoors. These can only prevent the smallscale spread of an aerosol in the short term, e.g. in the checkout area of a supermarket, but offer no protection in the longer term. Face shields and Plexiglas panels essentially serve as spit and splash protection against large droplets. • Outdoors, there are practically no infections caused by aerosol transmission. However, droplet infections can still occur, especially in crowds, if minimum distances are not observed and/or masks are not worn. In closed rooms, ventilation is essential to replace the exhaled air in a room with fresh air from outside. Frequent airing and cross-ventilation is just as effective as leaving the window open all the time. From an energy point of view, however, it is more efficient to ventilate the room, especially in winter. CO2 monitors can help to monitor indoor air quality. They indicate when it is necessary to ventilate and when the air in a room has been sufficiently changed during ventilation. However, they can only be used as an indicator and even if the proposed CO2 limit concentrations are met, they do not prevent direct infection by people in the immediate vicinity. • Air purifiers can make a useful contribution to reducing the concentration of particles and viruses in a room. When procuring air purifiers, care must be taken to ensure that they are adequately dimensioned for the room and application in question in order to significantly reduce the particle and virus load. The air throughput of the unit is more important than the pure efficiency of the filter. For energy and cost reasons, the use of highly efficient filters can even be counterproductive. Permanently installed ventilation systems can also be useful, provided they filter the air to reduce the particle and virus load in a room. To avoid infections, it is advisable to operate them with 100 % fresh air if possible. From the point of view of the Gesellschaft für Aerosolforschung, there is a considerable need for research, especially at the interdisciplinary borders to research fields of epidemiology, infectiology, virology, ventilation technology and fluid mechanics. The implementation of targeted studies should be made possible at short notice with special funding and research programmes. This paper was written originally in German by members of the Gesellschaft für Aerosolforschung and is supported by a large number of international aerosol experts. Both the English and German version as well as all images in the paper are available for free download at the following link: https://www.info.gaef.de/positionspapier. The “Gesellschaft für Aerosolforschung e. V.” must be named as the source, whenever an image is used. KW - COVID KW - SARS KW - GAeF KW - Aerosol KW - Corona PY - 2021 UR - https://www.info.gaef.de/_files/ugd/fab12b_d8d88393f90240cdbea63c88c09887ef.pdf DO - https://doi.org/10.5281/zenodo.4350494 SP - 1 EP - 48 PB - Association for Aerosol Research CY - Köln AN - OPUS4-53955 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tang, Chi-Long A1 - Wilke, Olaf A1 - Seeger, Stefan A1 - Kalus, Sabine A1 - Erdmann, Kerstin T1 - Chemical characterization of ultrafine particles released from 3D printers N2 - Previous studies have shown that desktop 3D printers (Fused Filament Fabrication) emit high numbers of particulate matter, mainly as ultrafine particles (UFP, particle diameter less than 100 nm). However, the chemical composition of emitted particles has been less extensively investigated. In this study, we therefore focused on the chemical composition of particles emitted from 3D printing. The measurements were conducted in a 1 m³ emission test chamber. Emitted particles were sampled by a 13-stage low-pressure cascade impactor onto aluminum foils and then analyzed by TD-GC/MS to identify their organic compounds. Nine commercial filaments made from basic polymers such as Acrylonitrile Butadiene Styrene (ABS), Acrylonitrile Styrene Acrylate (ASA), Polycarbonate (PC), Poly(methyl methacrylate) (PMMA), Nylon, High Performance Polystyrene (HIPS) and a copper-filled Polylactide (PLA) were investigated. The results show that the organic components of the particles are primarily plastic additives such as plasticizer, antioxidant agents, lubricants, UV-absorbers and UV-stabilizers from the filaments. T2 - 17th International Conference Healthy Buildings Europe 2021 CY - Online Meeting DA - 21.06.2021 KW - Chemical characterization KW - FFF-3D-Printer KW - UFP KW - Chamber measurement PY - 2021 SP - 251 EP - 252 AN - OPUS4-54255 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Seeger, Stefan A1 - Osan, J. A1 - Czömpöly, O. A1 - Gross, A. A1 - Stoßnach, H. A1 - Stabile, L. A1 - Ochsenkuehn-Petropoulou, M. A1 - Tsakanika, L. A. A1 - Lymperopoulou, T. A1 - Goddart, S. A1 - Fiebig, M. A1 - Gaie-Levrel, F. A1 - Rissler, J. A1 - Kayser, Y. A1 - Beckhoff, B. T1 - Element mass concentrations in ambient aerosols, a comparison of results from filter sampling & ICP-MS ans cascade impactor sampling & mobile total reflection X-RAY fluorescence spectroscopy N2 - Quantitative chemical analysis of airborne particulate matter (PM) is vital for the understanding of health effects in indoor and outdoor environments and required by EU air quality regulations. Typically, airborne particles are sampled on filters, followed by lab-based analysis, e.g., with inductively coupled plasma mass spectrometry (ICP-MS). Within the EURAMET EMPIR AEROMET project, cascade impactor aerosol sampling was combined with on-site total reflection X-ray fluorescence (TXRF) spectroscopy. The study aimed at a proof of principles for this new mobile and on-size tool for the quantification of aerosol element compositions and element mass concentrations within short time intervals of less than 12 h. In a field campaign the method’s technical feasibility could be demonstrated. The TXRF results were traced back to a stationary, reference-free XRS setup in the laboratory of the German national metrology institute PTB at the BESSY II electron storage ring in Berlin, Germany. Simultaneous PM10-filter sampling, followed by standardized lab-based analysis, allowed for a comparison of the field campaign data of both methods. As Fig. 1 shows, the correspondence between PM10 filter sampling and ICP-MS, and on the other hand, cascade impactor sampling and TXRF is quite encouraging. However, for some of the analysed elements, e.g. V and Pb, the observed deviations are higher than expected and this highlights the fact, that spectral deconvolution strategies for TXRF on cascade impactor samples still need some improvement. This work was supported by the EMPIR programme, co-financed by the Participating States and from the European Union’s Horizon 2020 research and innovation programme, through grant agreements 16ENV07 AEROMET and 19ENV08 AEROMET II T2 - 12th International Conference on Instrumental Methods of Analysis (IMA-2021) CY - Athens, Greece DA - 20.09.2021 KW - Aerosol KW - TXRF KW - Reference method KW - Cascade impactor KW - Ambient aerosols KW - Air quality monitoring KW - Element mass concentration KW - Size resolved chemical composition KW - Time resolved chemical composition KW - ICP-MS PY - 2021 AN - OPUS4-53597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Keller, Lisa-Marie A1 - Scholz, Lena A1 - Weigert, Florian A1 - Radnik, Jörg A1 - Rühle, Bastian A1 - Bresch, Harald T1 - Nanocarriers – Challenges Imposed by Material Characterization N2 - A brief perspective of BAM on nanocarriers is presented including examples with special emphasis on the characterization of such materials and underlying challenges. In this respect, also ongoing activities at BAM on different types of core/shell nanomaterials and related systems are briefly summarized. T2 - Kolloquium BfR CY - Online meeting DA - 18.03.2021 KW - Nanomaterial KW - Nanocarrier KW - Size KW - Surface chemistry KW - Release kinetics KW - Chemical composition KW - Core/shell nanoparticle KW - Quantum dot KW - Spectroscopy KW - Fluorescence PY - 2021 AN - OPUS4-52412 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tang, Chi-Long A1 - Wilke, Olaf A1 - Seeger, Stefan A1 - Kalus, Sabine A1 - Erdmann, Kerstin T1 - Chemical characterization of ultrafine particles released from 3D printers N2 - Previous studies have shown that desktop 3D printers (Fused Filament Fabrication) emit high numbers of particulate matter, mainly as ultrafine particles (UFP, particle diameter less than 100 nm). However, the chemical composition of emitted particles has been less extensively investigated. In this study, we therefore focused on the chemical composition of particles emitted from 3D printing. The measurements were conducted in a 1 m³ emission test chamber. Emitted particles were sampled by a 13-stage low-pressure cascade impactor onto aluminum foils and then analyzed by TD-GC/MS to identify their organic compounds. Nine commercial filaments made from basic polymers such as Acrylonitrile Butadiene Styrene (ABS), Acrylonitrile Styrene Acrylate (ASA), Polycarbonate (PC), Poly(methyl methacrylate) (PMMA), Nylon, High Performance Polystyrene (HIPS) and a copper-filled Polylactide (PLA) were investigated. The results show that the organic components of the particles are primarily plastic additives such as plasticizer, antioxidant agents, lubricants, UV-absorbers and UV-stabilizers from the filaments. T2 - Healthy Buildings Europe 2021 CY - Online meeting DA - 21.06.2021 KW - UFP KW - FFF-3D-Printer KW - Chemical characterization PY - 2021 AN - OPUS4-52895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heuser, Lina A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Agudo Jácome, Leonardo A1 - Feldmann, Ines A1 - Deubener, J. T1 - Silver diffusion in low-melting alkali zinc borate model glasses studied by means of SNMS, TEM and XAS N2 - In many late-breaking research fields as in photovoltaics, microelectronics, nuclear waste glasses or at least mirror glasses silver diffusion in glasses is relevant to the issues of high-level functionality and recycling. The present study is focused on silver diffusion in innovative, low-melting alkali zinc borate glasses (X2O-ZnO-B2O3, X = Li, Na, K, Rb) potentially usable for silver metallization-pastes in solar cells. The glasses were coated with a thin metallic silver layer and heat treatments in air and nitrogen close to Tg at 470 °C for 2 h were performed. After heat treatment under air and nitrogen atmospheres the coating thickness, measured by a white light interferometer, was about 1.8 µm thick. Silver depth profiles determined by means of secondary neutral mass spectrometry (SNMS) indicate the fastest silver diffusion to a depth of 3.5 µm for Li2O-ZnO-B2O3 (LZB) glass. Nevertheless, the influence of the different alkali ions on the silver diffusion is small. The oxygen availability determines the silver diffusion into the glasses. The oxygen promotes the oxidation of the silver layer enabling Ag+ to diffuse into the glass and to precipitate as Ag0. Both species were detected by x-ray absorption spectroscopy (XAS). The precipitated metallic silver particles in Na2O-ZnO-B2O3 (NZB) glass have a mean size of 5.9 nm ± 1.2 nm diameter, which was determined using transmission electron microscopy (TEM). Phase separation in zinc-rich and zinc-poor phases with a mean diameter of 75 nm ± 20 nm occurred in NZB glass after heat treatment. Ion diffusion of the glasses into the silver layer was suggested by EDX-line scans. T2 - 94. Glastechnische Tagung CY - Online meeting DA - 10.05.2021 KW - Silver diffusion KW - Alkali zinc borate glass KW - Metallic silver precipitates KW - Phase separation PY - 2021 AN - OPUS4-52861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abram, Sarah-Luise A1 - Mrkwitschka, Paul A1 - Prinz, Carsten A1 - Rühle, Bastian A1 - Kuchenbecker, Petra A1 - Hodoroaba, Vasile-Dan A1 - Resch-Genger, Ute T1 - Monodisperse iron oxide nanoparticles as reference material candidate for particle size measurements N2 - In order to utilize and rationally design materials at the nanoscale the reliable characterization of their physico-chemical properties is highly important, especially with respect to the assessment of their environmental or biological impact. Furthermore, the European Commission’s REACH Regulations require the registration of nanomaterials traded in quantities of at least 1 ton. Powders or dispersions where 50% (number distribution) of the constituent particles have sizes ≤ 100 nm in at least one dimension are defined as nanomaterials. This creates a need for industrial manufacturers and research or analytical service facilities to reliably characterize potential nanomaterials. Currently, BAM is developing reference nanoparticles, which shall expand the scarce list of worldwide available nano reference materials certified for particle size distribution and will also target other key parameters like shape, structure, porosity or functional properties. In this respect, materials like iron oxide or titanium dioxide are considered as candidates to complement the already available silica, Au, Ag, and polystyrene reference nanoparticles. The thermal decomposition of iron oleate precursors in high boiling organic solvents can provide large quantities of iron oxide nanoparticles that can be varied in size and shape.[1, 2] The presence of oleic acid or other hydrophobic ligands as capping agents ensures stable dispersion in nonpolar solvents. Such monodisperse, spherical particles were synthesized at BAM and pre-characterized by electron microscopy (TEM, SEM including the transmission mode STEM-in-SEM) and dynamic light scattering comparing cumulants analysis and frequency power spectrum. 1. REACH regulations and nanosafety concerns create a strong need for nano reference materials with diverse properties. 2. Iron oxide nanoparticles are under development as new candidate reference material at BAM. 3. Narrow particle size distribution confirmed by light scattering and electron microscopy. T2 - Nanosafety 2020 CY - Online meeting DA - 05.10.2020 KW - Iron oxide nanoparticles KW - Reference material KW - Particle size KW - Electron microscopy KW - Nanoplattform PY - 2020 AN - OPUS4-52774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Raedel, Martina A1 - Bücker, Michael A1 - Feldmann, Ines A1 - Reimann, M. T1 - Conservation of damaged architectural aluminum elements N2 - Aluminum is an often-used building material in modern architecture. In recent years buildings from the 1950th and 1960th are increasingly subject of conservation works including the aluminum parts. Typical surface damages are signs of corrosion caused by weathering processes or scratches in the anodized layer due to extensive wear. To repair damaged aluminum surfaces, there are usually two options: smaller areas are repaired by using a touch-up pen, for larger damages it is necessary to remove the anodized layer completely. Both possibilities are disadvantageous for the objects; the touch-up pen often does not match the color together with an insufficient corrosion protection, while newly anodized layers often differ in color and gloss from the original surface. For this reason, a research project was initiated to develop a mobile method to repair anodized aluminum parts. The first step focusses on the mobile anodization process by using the electrolyte with a gel substrate. Different cathodic materials are to be tested together with appropriate cooling material. The anodized area should be isolated to protect undamaged areas. Examinations of the produced layers are conducted by using Keyence microscope, eddy current testing and ESEM analysis. Further steps are to transform the coloring and sealing process for mobile application. Color could be applied by using a brush or by spray while the sealing process could be performed with water vapor. An heatable putty knife could be used, if heating up the area will be necessary. Once the application process is developed, the anodization will be tested on samples with artificial damages, fixed in horizontal and vertical positions. The stability of the anodized surface will be examined by accelerated ageing in a climate chamber and outdoor weathering. The electrolyte (diluted sulfuric acid) was combined with a gel binder to enable a mobile application. Several thickening agents were tested concerning their conductivity and stability in acid systems. Anodization tests with different cathodic material and shapes were conducted. The temperature during anodization was controlled and adjusted if necessary. The anodized area was restricted by using either a lacquer, an adhesive or a removable silicon barrier. The fist results show the feasibility of the method on enclosed areas. The achieved thickness was measured by eddy current testing and the structure was controlled by ESEM analysis. The examinations show a connection between thickness and porosity of the anodized layers and the temperature during the application process. Next steps are testing mobile coloring and sealing methods followed by mobile anodization on artificial damaged areas. T2 - Metal 2019 CY - Neuchâtel, Switzerland DA - 02.09.2019 KW - Mobile anodisation KW - Aluminium KW - Conservation KW - Damage repair PY - 2020 UR - https://www.lulu.com/shop/claudia-chemello-and-laura-brambilla-and-edith-joseph/metal-2019-proceedings-of-the-interim-meeting-of-the-icom-cc-metals-working-group-september-2-6-2019-neuch%C3%A2tel-switzerland-ebook/ebook/product-24517161.html AN - OPUS4-51479 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Horn, Wolfgang A1 - Jann, Oliver A1 - Hahn, Oliver T1 - The BEMMA-Scheme helpful for low VOC inside display cases? N2 - Museums worldwide are equipped with different display cases. Exhibit display cases should protect cultural objects from dust as well as from mechanical and physical damage. To ensure a stable climate inside the display cases, a low air exchange rate is maintained. Typically, air exchange rates are often smaller than 0.1 d-1, which can result in rising concentrations of potential harmful VOC inside of the display cases due to emissions from materials. Especially organic acids, e. g. formic or acetic acid which can emit from e.g. sealing materials or wood-based materials, can produce damage of cultural objects. In 2012 BAM introduced a procedure which is called: BEMMA-Scheme (Bewertung von Emissionen aus Materialien für Museums¬ausstattungen) which stands for: “Assessment of Emissions from Materials for Museum Equipment”. Regarding the testing procedure only construction materials were evaluated, not the display cases their self. Micro chambers are used for VOC emission tests of display case construction materials, e.g. plastics, sealing materials, coatings, textiles and others. Each sampling procedure is carried out in duplicate. Emissions like formic acid, acetic acid, formaldehyde, piperidine-derivates and oximes are excluded and the sum of emissions of VVOCs, VOCs and SVOCs is limited. For a positive assessment all listed criteria must be fulfilled; otherwise the display construction material fails the BEMMA scheme. T2 - Indoor Air Quality in Heritage and Historic Environments CY - Online meeting DA - 12.10.2020 KW - Museum KW - VOC-emission KW - BEMMA KW - Display case PY - 2020 AN - OPUS4-51470 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald T1 - Standard Operating Procedures in the digital context N2 - The intention of the presentation is to inspire a discussion on the needs and challenges for the digitalisation of SOPs. SOPs are available for the disciplines of physical-chemical characterisation, for toxicology, for environmental applications and for exposure applications. Furthermore the SOPs need to be integrated in the regulatory framework and need to be detailed enough for the digital processing. This is highlighted in this presentation. T2 - Nanosafety 2020 CY - Online meeting DA - 07.10.2020 KW - Nano KW - SOP KW - NFDI KW - Digitalisation KW - Operating Procedure PY - 2020 AN - OPUS4-51491 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Even, Morgane A1 - Juritsch, Elevtheria A1 - Jann, Oliver A1 - Richter, Matthias T1 - Towards an efficient procedure for the analysis of VVOC emissions N2 - This poster summarizes the points that need to be addressed towards the standardization of an efficient procedure for the analysis of VVOC emissions: Standard mixture generation and investigations on mutual reactivity, selection of an appropriate sorbent combination, water management and choice of a suited GC column. T2 - Indoor Air 2020: The 16th conference of the international society of indoor air quality and climate CY - Online meeting DA - 01.11.2020 KW - VVOCs KW - Analytical method KW - ISO 16000-6 KW - EN 16516 PY - 2020 AN - OPUS4-52023 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Even, Morgane A1 - Wilke, Olaf A1 - Kalus, Sabine A1 - Schultes, P. A1 - Hutzler, C. A1 - Luch, A. T1 - Formaldehyde emissions from wooden toys: Method comparison and exposure assessment N2 - This study shows that formaldehyde Emission results in micro-scale emission chambers are comparable with results in bigger chambers both for particle boards and wooden toys. On the contrary, the WKI flask method was leading to more variable results depending on sample geometry. Thus, microchambers could be used for reliable routine market surveillance. An exposure assessment led to noticeable formaldehyde indoor air concentration values, pointing out the need for an effective Surveillance of such samples. T2 - Indoor Air 2020: The 16th conference of the international society of indoor air quality and climate CY - Online meeting DA - 01.11.2020 KW - Volatile organic compounds KW - Consumer products KW - WKI flask method KW - Emission chambers KW - Market surveillance PY - 2020 AN - OPUS4-52024 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nöller, Renate A1 - Feldmann, Ines A1 - Kasztovszky, Z. A1 - Szőkefalvi-Nagy, Z. A1 - Kovács, I. T1 - Characteristic Features of Lapis Lazuli from Different Provenances, Revised by µXRF, ESEM, PGAA and PIXE N2 - The objective of this study is to find out, to what extent the geochemical characteristics of lapis lazuli can be utilized in respect to its provenance. A wide range of variables is taken into consideration depending on the quantity of samples analysed from a specific geological region and the methods applied. In order to provide evidence, a multi-technique analytical approach using µXRF, ESEM, PGAA and PIXE is applied to samples from the most famous deposits of lapis lazuli. Special elements determined as fingerprints are compared in relation to the forming conditions obvious in textural features. The results and statistical output allow a differentiation that enables an optimized local classification of the blue stone. An absolute requirement for all geo-tracing performed on blue colored cultural objects of unknown provenance is awareness of the limits of analysis. The possible sources of lapis lazuli are tested by analysing the blue pigment used as paint on murals and ink on manuscripts from the Silk Road. KW - Lapis lazuli KW - Micro-XRF KW - ESEM KW - PGAA KW - PIXE KW - Pigment analyses KW - Provenance studies PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-491181 DO - https://doi.org/10.17265/2328-2193/2019.02.003 SN - 2328-2193 VL - 7 IS - 2 SP - 57 EP - 69 PB - David CY - New York, NY AN - OPUS4-49118 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kämpf, K. A1 - Schmidt, Alexandra A1 - Bresch, Harald A1 - Bachmann, V. A1 - Kuhlbusch, T. A1 - Schwirn, K. A1 - Völker, D. T1 - Test Guideline on Particle Size and Size Distribution of Manufactured Nanomaterials N2 - The particle size distribution is considered the most relevant information for nanoscale property identification and material characterization. The current OECD test guideline on particle size and size distribution (TG 110) is not applicable to ‘nano-sized’ objects. In this project we thus develop a new OECD test guideline for the measurement of the size and size distribution of particles and fibers with at least one dimension in the nanoscale. A fiber is defined as an object having an aspect ratio of length/diameter l/d >3. The width and length of each fiber should be measured concurrently. In order to measure the particle size distributions, many techniques are available. 9 methods for particles and 2 methods for fibres have been tested in a prevalidation study and appropriate methods will be compared in an interlaboratory round robin test starting in February 2019. T2 - Workshop zur gemeinsamen Forschungsstrategie der Bundesoberbehörden „Nanomaterialien und andere innovative Werkstoffe: anwendungssicher und umweltverträglich“ CY - Berlin, Germany DA - 02.09.2019 KW - OECD KW - Nano KW - Guideline KW - Particle size distributuion KW - Prüfrichtlinie PY - 2019 AN - OPUS4-49507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald A1 - Schmidt, Alexandra A1 - Bachmann, V. A1 - Kämpf, K. A1 - Kuhlbusch, T. A1 - Schwirn, K. A1 - Völker, D. ED - Bosse, H. ED - Buhr, E. ED - Dziomba, T. ED - Hodoroaba, Vasile-Dan ED - Klein, T. ED - Krumrey, M. T1 - OECD Test Guideline on particle size and size distribution of manufactured nanomaterials N2 - The properties of nanomaterials are influenced not only by their chemical composition but also by physical properties (such as size, geometry and crystal structure). For the reliable determination and assessment of behaviour and effects of nanomaterials as well as for the determination of the exposure of humans and environment a comprehensive physical-chemical characterization of nanomaterials is essential. This is an important prerequisite to identify them as nanomaterials and to interpret and compare test results and - in future – to forecast interaction and effects of nanomaterials. In 2006, the OECD launched a sponsorship program for the testing of nanomaterials in which 11 nanomaterials were thoroughly investigated using a variety of methods. The aim of the project was, among other things, to find out where problems occur and where there are gaps in the measurement and test procedures and where are changes required. An important outcome of the sponsorship program was the finding that the OECD Test Guidelines should in several cases be extended to the specific needs in testing of nanomaterials. The existing standardized test methods of the OECD for physical-chemical characterization have not been developed for nanomaterials in particular. A high demand for an extension of the test guidelines was identified. Germany complied with the OECD's request in 2017 and has agreed to extend the “Test Guideline on Particle Size Distribution / Fiber Length and Diameter Distributions Test Guideline” for Manufactured Nanomaterials (MN). UBA commissioned BAM and BAuA with the preparation of the Test Guideline. The aim of the project is the development of a harmonized test protocol for a valid and reproducible determination of particle size and size distribution which is one of the most relevant physical-chemical properties for MNs. Different measuring methods provide different results for the size distribution of the particles. This is caused by the different measuring principles of the methods. Each method measures a specific parameter that ultimately determines particle size. First, the measured quantity differs for each method (Scattered light intensity, 2D image / projection, electric mobility, etc.). Second, the calculated diameters of the MN may differ (Feret Diameter, Area Projection, Mobility Diameter, Aerodynamic Diameter, Hydrodynamic Diameter). Third, a measuring method provides a size distribution which is measured either mass-based, surface-based or number-based. A conversion between the results requires additional parameters and thus possibly increases the measurement error. In addition to the technical differences, the individual parameters are strongly influenced by the structure and material of the nanoparticles. For example, a surface functionalization can lead to very different results in the size distribution. The suitability of measurement methods differs with the material of the MN. As a result, two very different results can be measured for the particle size distribution using two different methods, which are nevertheless both correct. Several large projects in recent years therefore concluded that nanomaterials should be characterized by at least two complementary method. Imaging techniques are regarded as one of these methods for the characterization, the complementary methods are supposed to be statistical methods. The different results for the size distribution of nanomaterials become problematic for the registration of new MN. A comparable and reproducible size distribution is a prerequisite for a standardized registration. In the future, the particle size distribution in the EU will also decide on the classification of a substance as a nanomaterial or as a non-nanomaterial. Especially in borderline cases, a standardized and comparable measurement methodology is therefore essential. T2 - NanoWorkshop 2018: Workshop on Reference Nanomaterials CY - Berlin, Germany DA - 14.05.2018 KW - OECD KW - Guideline KW - Particle size distribution KW - Nano KW - Prüfrichtlinie PY - 2019 SN - 978-3-95606-440-1 DO - https://doi.org/10.7795/110.20190412 SN - 0179-0609 VL - F-61 SP - 125 EP - 132 PB - Physikalisch-Technische Bundesanstalt CY - Braunschweig und Berlin AN - OPUS4-49511 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kämpf, K. A1 - Bachmann, V. A1 - Bresch, Harald A1 - Schmidt, Alexandra A1 - Kuhlbusch, T. A1 - Schwirn, K. A1 - Völker, D. ED - Bosse, H. ED - Buhr, E. ED - Dziomba, T. ED - Hodoroaba, Vasile-Dan ED - Klein, T. ED - Krumrey, M. T1 - OECD Test Guideline on particle size and particle size distribution of manufactured nanomaterials: simultaneous measurement of length and diameter of fibers N2 - The new OECD test guideline will address the following four main steps in the determination of the length and width distributions of fibers: sample preparation, image acquisition, data evaluation and uncertainty analysis. As the sample preparation has to be optimized for each material, general quality criteria will be given in the protocol. For full visibility of a fiber the appropriate resolution has to be chosen. In the data evaluation the length and diameter of each fiber will be determined concurrently to allow for application of different regulatory definitions. The quality of the results critically depends on the sample preparation as well as the data evaluation. In this step the classification rules have to be formulated and followed accurately in order to optimize reproducibility of the method. The SOP will be validated in an international round robin test, which is planned for 2018/2019. T2 - NanoWorkshop 2018: Workshop on Reference Nanomaterials CY - Berlin, Germany DA - 14.05.2018 KW - OECD KW - Nano KW - Guideline KW - Particle size distributuion KW - Prüfrichtlinie PY - 2019 SN - 978-3-95606-440-1 DO - https://doi.org/10.7795/110.20190412 SN - 0179-0609 VL - F-61 SP - 302 EP - 302 PB - Physikalisch-Technische Bundesanstalt CY - Braunschweig und Berlin AN - OPUS4-49514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schwirn, K. A1 - Völker, D. A1 - Ahtianinen, J. A1 - Schmidt, Alexandra A1 - Bresch, Harald A1 - Kämpf, K. A1 - Bachmann, V. A1 - Kuhlbusch, T. ED - Bosse, H. ED - Buhr, E. ED - Dziomba, T. ED - Hodoroaba, Vasile-Dan ED - Klein, T. ED - Krumrey, M. T1 - OECD Test Guidelines development for chemicals safety assessment of nanomaterials N2 - The OECD test guidelines (TGs) for testing chemicals have been widely used for regulatory purposes all over the world since the establishment of the Mutual Acceptance of Data (MAD) principle in 1984. This MAD principle ensures that, if a chemical is tested under the Good Laboratory Practice (GLP) conditions accordingly to an OECD TG, the data should be accepted in all OECD countries. The TGs have been developed, harmonized, internationally validated (round robin tests) and adopted by OECD countries to be used for the physical-chemical characterisation, fate estimation, and hazard identification for risk assessment of various chemicals. In addition to the TGs, OECD Guidance Documents (GDs) usually provide guidance on how to use TGs and how to interpret the results. These GDs do not have to be fully experimentally validated, and hence they are not under MAD, but they are based on relevant published scientific research. But are the existing TGs and the related GDs applicable and adequate for the regulatory testing of nanomaterials? In general, for nanomaterials it is accepted that most of the "endpoints" or more precisely measurement variables are applicable. However, for some endpoints new or amended TGs are needed. In addition, several GDs are needed to give more precise advice on the test performance in order to gain regulatory relevant data on nanomaterials. T2 - NanoWorkshop 2018: Workshop on Reference Nanomaterials CY - Berlin, Germany DA - 14.05.2018 KW - OECD KW - Nano KW - Guideline KW - Nanomaterials KW - Prüfrichtlinie PY - 2019 SN - 978-3-95606-440-1 DO - https://doi.org/10.7795/110.20190412 SN - 0179-0609 VL - F-61 SP - 279 EP - 279 PB - Physikalisch-Technische Bundesanstalt CY - Braunschweig und Berlin AN - OPUS4-49515 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -