TY - CONF A1 - Catanzaro, Ilaria A1 - Nitsche, Sarah A1 - Gorbushina, Anna A1 - Schumacher, Julia A1 - Onofri, S. T1 - Understanding the role of DHN melanin in Cryomyces antarcticus N2 - Cryomyces antarcticus – a cryptoendolithic black fungus endemic to Antarctica – is taxonomically classified in phylum Ascomycota, class Dothideomycetes incertae sedis. C. antarcticus has shown high capability to survive extreme environmental conditions like those found in space (ionizing radiation, vacuum, microgravity), thus fueling fundamental astrobiological questions like “searching for life beyond Earth” (Onofri et al. 2020, Extremophiles Astrobiol Model). Its extraordinary resilience has been attributed to the presence of thick, highly melanized cell walls, which may contain both DHN and DOPA melanins (Pacelli et al. 2020, Appl Microbiol Biotechnol). To better understand the contribution of DHN melanin to the overall resilience of C. antarcticus, we initially adopted chemicals e.g., tricyclazole to inhibit the DHN melanin synthetic pathway; however, these studies gave inconclusive results. Eventually, we decided to generate melanin-deficient mutants by genetic engineering. Using the genetic toolkit developed for the black fungus Knufia petricola (Voigt et al. 2020, Sci Rep; Erdmann et al. 2022, Front Fungal Biol), we designed a strategy for mutating the key enzyme (polyketide synthase)-encoding gene capks1 by transient delivery of Cas9 and capks1-specific sgRNA from AMA-containing plasmids and PCR-generated donor DNA i.e., resistance cassettes flanked by ~75-bp-long sequences homologous to capks1. For this, the melanin-PKS encoding ortholog was identified in the C. antarcticus CBS 116301 genome (mycocosm.jgi.doe.gov) and used to design primers for re-sequencing of the capks1 locus in the strain CCFEE 515. Transformation of C. antarcticus is challenging because of its very slow growth; we expect that 4-6 months are needed from obtaining enough biomass for cell wall lysis until transferring putatively resistant transformants for genotyping. Important parameters were evaluated: protoplasts can be generated, and they survive the transformation procedure, and suitable concentrations of selective agents have been identified. Nowadays, we are waiting for the first C. antarcticus mutants considered to be deficient in DHN melanogenesis. T2 - 16th European Conference on Fungal Genetics CY - Innsbruck, Austria DA - 05.03.2023 KW - Cryptoendolithic black fungus KW - DHN melanin KW - Astrobiology PY - 2023 AN - OPUS4-57145 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia A1 - Brandhorst, Antonia A1 - Erdmann, Eileen A1 - Nitsche, Sarah A1 - Voigt, Oliver A1 - Gorbushina, Anna T1 - DHN melanin synthesis in the rock inhabitant Knufia petricola N2 - DHN (1,8-dihydroxynaphthalene) melanin is produced by Ascomycetes via slightly differing synthetic routes. Polyketide synthases release YWA1, AT4HN or T4HN. YWA1 and AT4HN are deacetylated by ‘yellowish-green’ hydrolases, and T4HN is converted by a core set of enzymes to DHN. Final polymerization steps are accomplished by multicopper oxidases. The melanogenic genes are tightly, partially or not clustered in the genomes, and are often regulated in a spatial and/or temporal fashion. By contrast, microcolonial fungi/black yeasts – a polyphyletic group of Ascomycetes dwelling in hostile habitats such as bare rock surfaces – feature constitutive DHN melanogenesis. Here, we report on the DHN melanogenic genes of Knufia petricola (Eurotiomycetes/Chaetothyriales). T2 - 16th European Conference on Fungal Genetics CY - Innsbruck, Austria DA - 05.03.2023 KW - DHN melanin KW - Fungus KW - Biosynthesis PY - 2023 AN - OPUS4-57143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia A1 - Brandhorst, Antonia A1 - Erdmann, Eileen A1 - Nitsche, Sarah A1 - Voigt, Oliver A1 - Gorbushina, Anna T1 - DHN melanin synthesis in the rock inhabitant Knufia petricola N2 - DHN (1,8-dihydroxynaphthalene) melanin is produced by different Ascomycetes via slightly differing biosynthetic routes. The polyketide synthases (PKS) release the heptaketide YWA1, the hexaketide AT4HN or the pentaketide T4HN. The first two products are deacetylated by ‘yellowish-green’ hydrolases to T4HN, and T4HN is further converted by a core set of enzymes to DHN. Final polymerization steps are accomplished by multicopper oxidases (MCOs). The involved genes are tightly clustered, partially clustered or widely distributed in the genomes of DHN melanin-producing fungi. DHN melanogenesis is often regulated in a spatial and temporal fashion resulting e.g. in melanized reproduction, survival and/or infection structures. In contrast, a polyphyletic group of Ascomycetes (microcolonial fungi/ black yeast) dwelling in hostile habitats such as bare rock surfaces in hot and cold deserts, exhibits constitutive melanogenesis. Here, we report on the identification and functional characterization of the DHN melanogenic genes of Knufia petricola as a representative of the Chaetothyriales, the sister order of the Eurotiales. Orthologs for all melanogenic genes were identified in the genome of K. petricola A95, including one gene encoding the polyketide synthase (KpPKS1), two genes encoding ‘yellowish-green’ hydrolases (KpYGH1,2), two genes encoding THN reductases (KpTHR1,2) and one gene encoding a scytalone dehydratase (KpSDH1). Ten genes encoding MCOs were identified, all MCOs are predicted to be secreted. The genes are not clustered in the genome but are highly expressed. Gene functions are studied by generation of single, double, and multiple deletion mutants in K. petricola and by heterologous expression in Saccharomyces cerevisiae for reconstruction of the synthesis pathway. T2 - VAAM Fachgruppentagung "Molecular Biology of Fungi" CY - Kaiserslautern, Germany DA - 07.09.2022 KW - DHN melanin KW - Genetics KW - Biodegradation PY - 2022 AN - OPUS4-55676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -