TY - CONF A1 - Schreiber, Frank T1 - Biocide resistance risk assessment N2 - This presentation details the current status of biocide resistance risk assessment. T2 - Risk assessment of biocide and antibiotic resistance CY - Online meeting DA - 09.03.2022 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Standardization KW - Biocides KW - Risk assessment PY - 2022 UR - https://www.gu.se/en/biocide/risk-assessment-of-biocide-and-antibiotic-resistance AN - OPUS4-56235 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Resistenzen von Bakterien gegen Biozide – Evolution, Mechanismen und Methoden N2 - Diese Präsentation gibt einen Überblick über die Aktivitäten zum Thema Biozidresistenz an der BAM. T2 - Life Science Nord - Online-Update Hygiene und Infektionsprävention CY - Online meeting DA - 14.06.2022 KW - Antimikrobielle Resistenz KW - Antmikrobielle Oberflächen KW - Standardisierung KW - Biozide KW - Risikobewertung PY - 2022 UR - https://vimeo.com/722198443 AN - OPUS4-56236 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Biocides As Drivers For Antimicrobial Resistance Evolution In The Environment N2 - Antimicrobial resistance (AMR) is a global health problem with the environment being an important compartment for the evolution, selection and transmission of AMR. These processes are impacted by pollution with antibiotics. However, biocides used as disinfectants and material preservatives are major pollutants by far excceding the market for antibiotics in terms of mass. Our work shows that biocides have the potential to affect evolutionary processes towards AMR by increasing the rates of de-novo mutation and conjugation. These effects depend on the species and biocidal substance. Importantly, chlorhexidine and quaternary ammonium compounds (QACs) affect rates of mutation and conjugation at environmentally relevant concentrations in E. coli. Moreover, our results show a connection between the RpoS-mediated general stress and the RecA-linked SOS response with increased rates of mutation and conjugation, but not for all biocides. Furthermore, our work highlights the potential of biocides to contribute to selection and transmission of AMR. We show that the application of biocides, especially QAC disinfectants, leads to the rapid evolution of tolerance (i.e. increased survival) in adaptive laboratory evolution (ALE) experiments. The evolved tolerant strains have a selective advantage in the presence of environmentally-relevant concentrations of antibiotics, which could lead to the stabilization of biocide tolerance in environments where biocides and antibiotics co-occur (e.g. wastewater, animal stables). ALE experiments with biocide tolerant strains indicate a decreased evolvability of resistance to antibiotics. Taken together, our work shows the importance of assessing the contribution of biocides on evolution, selection and transmission of AMR in the environment. T2 - 6th Environmental Dimension of Antibiotic Resistance (EDAR6) CY - Gothenburg, Sweden DA - 22.09.2022 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Biofilms KW - Biocides KW - Risk assessment PY - 2022 AN - OPUS4-56262 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Biocide Resistance - Road to Risk Assessment N2 - This presentation details the current status of biocide resistance risk assessment and provides a roadmap for future activities. T2 - OECD, 6th Meeting of the Working Party on Biocides CY - Paris, France DA - 28.09.2022 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Standardization KW - Biocides KW - Risk assessment PY - 2022 AN - OPUS4-56263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - BIOCIDE N2 - This presentation gives an overview about the BIOCIDE project performed with the Aquatic Pollutants joint call. T2 - Aquatic Pollutants TransNet workshop CY - Online meeting DA - 09.11.2022 KW - Antimicrobial resistance KW - Bacteria KW - Biofilms KW - Biocides KW - Risk assessment KW - Wastewater PY - 2022 AN - OPUS4-56265 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Selection of resistance by antimicrobials used in coatings N2 - Antimicrobial surfaces have broad use in multiple settings including touch surfaces in hospitals, implanted devices, or consumer products. Their aim is to support existing hygiene procedures, and to help combat the increasing threat of antimicrobial resistance. However, concerns have been raised over the potential selection pressure exerted by such surfaces, which might drive the evolution and spread of antimicrobial resistance. In my presentation, I will highlight the risks and knowledge gaps associated with resistance on antimicrobial surfaces by different processes including evolution by de novo mutations and horizontal gene transfer, and species sorting of inherently resistant bacteria dispersed onto antimicrobial surfaces. The latter process has the potential to select for antibiotic resistance via cross-resistance between traits that confer resistance to both the antimicrobial surface coating and antibiotics. Conditions in which antibiotics and antimicrobial coatings are present simultaneously (e.g. implants) will lead to more complex interactions that can either result in the selection for or against antibiotic resistance. We mapped these interactions between several antimicrobials and antibiotics on growth and selection of Pseudomonas aeruginosa. We find prevalent physiological (i.e. synergy and antagonism) and evolutionary (i.e. cross-resistance and collateral sensitivity) combination effects. Understanding these interactions opens the door to tailor therapeutic interventions to select against resistance. In additions, we need new methods and translational studies that investigate resistance development to antimicrobial surfaces under realistic conditions. Therefore, I will present recent developments in our lab on the development of such a method based on existing efficacy standards. T2 - 2021 Fall Meeting of the European Materials Research Society (E-MRS) CY - Online meeting DA - 20.09.2021 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Biofilms KW - Biocides PY - 2021 AN - OPUS4-53645 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Physiological and evolutionary consequences of exposing Pseudomonas aeruginosa to biocide-antibiotic combinations N2 - Antimicrobials can exert specific physiological effects when used in combination that are different from those when applied alone. These effects include physiological effects (i.e. synergy, antagonism and suppression) as well as evolutionary effects on the selection of resistant strains (i.e. cross-resistance and collateral sensitivity). While combination effects have been extensively mapped for antibiotic-antibiotic combinations, the combination effects of antibiotics with antimicrobials used as biocides or antiseptics have not been systematically investigated. Here, we investigated the physiological and evolutionary consequences of combinations of antibiotics (meropenem, gentamicin and ciprofloxacin) and substances used as biocides or antiseptics (octenidine, benzalkonium chloride, cetrimonium bromide, chlorhexidine, povidone-iodine, silver) on growth and selection of Pseudomonas aeruginosa. We find prevalent physiological combination effects with synergy occurring 6 times and antagonism occurring 10 times. The effects are specific to the antibiotic-biocide combination with meropenem showing a tendency for antagonism with biocides (6 of 7), while gentamicin has a tendency for synergy (5 of 7). A particular strong antagonism is apparent for the meropenem-chlorhexidine combination, for which we conducted an in-depth study on the underlying molecular mechanism using RNASeq. Moreover, we find widespread effects of the biocide-antibiotic combinations on selection of P. aeruginosa strains resistant to the antibiotics, including cross-resistance and collateral sensitivity. In conclusion, antibiotics and biocides or antiseptics exert physiological and evolutionary combination effects on the pathogen P. aeruginosa. These effects have consequences for the efficacy of both types of substances and for the selection of antimicrobial resistant strains in clinical applications with combined exposure (e.g. wound care, coated biomaterials). T2 - Antimicrobial Resistance in Biofilms and on Biomaterials CY - Online meeting DA - 10.06.2021 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Biofilms PY - 2021 AN - OPUS4-53162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Resistance evolution towards biocides and antimicrobial surfaces N2 - Biocides, including disinfectants and antimicrobial surfaces (AMCs), are important to prevent the spread of pathogens and antimicrobial resistant bacteria via surfaces. However, concerns have been raised about the evolution and selection of resistance against disinfectants and AMCs. In turn, resistance against disinfectants and AMCs can be associated to antibiotic resistance due to cross-resistance and co-resistance. We need to understand the mechanisms and risks of disinfectants and AMCs for resistance and cross-resistance evolution to optimize their application and safeguard their long-term efficacy. We used adaptive laboratory evolution (ALE) experiments based on repeated exposure of bacteria to disinfectants. Our results show that repeated disinfection of E. coli with benzalkonium chloride in suspension results in a 2000-fold increase in survival within 5 exposure cycles. Adaption is linked to the initial presence of persister cells highly tolerant to benzalkonium chloride. We used the same approach to develop standardizable ALE experiments to determine resistance evolution to AMCs. The results highlight rapid adaptation of E. coli and P. aeruginosa towards copper surfaces. Moreover, there are multiple situations in the clinic or in the environment in which biocides and antibiotics co-occur and in which combination effects can shape their antimicrobial activity or their selective effects. Our work with P. aeruginosa shows prevalent combination effects of biocides and antibiotics, ranging from synergy to antagonism and resulting in the selection for or against antibiotic resistant strains. The combination effects are dependent on the biofilm mode-of-growth, manifesting in apparent differences in the structural arrangement of antibiotic sensitive and resistant strains in biofilms exposed to combinations. Furthermore, biocides affect rates of mutation and horizontal gene transfer, thereby having a potential facilitating effect on resistance evolution. Taken together, our work shows that the role of biocides as potential drivers of resistance evolution and selection deserves further study and regulative action. T2 - Eurobiofilms 2022 CY - Palma, Spain DA - 31.08.2022 KW - Antimicrobial resistance KW - Bacteria KW - Biofilms KW - Biocides KW - Antimicrobial surfaces PY - 2022 AN - OPUS4-55608 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Phenotypic diversity in microbial metabolism and antimicrobial resistance N2 - Most microorganisms live in environments where nutrients are limited and fluctuate over time. Cells respond to nutrient fluctuations by sensing and adapting their physiological state. Recent studies suggest phenotypic heterogeneity in isogenic populations as an alternative strategy in fluctuating environments, where a subpopulation of cells express a function that allows growth under conditions that might arise in the future. It is unknown how environmental factors such as nutrient limitation shape phenotypic heterogeneity in metabolism and whether this allows cells to respond to nutrient fluctuations. Here, we show that substrate limitation increases phenotypic heterogeneity in metabolism, and this heterogeneity allows cells to cope with substrate fluctuations. We subjected the N2-fixing bacterium Klebsiella oxytoca to different levels of substrate limitation and substrate shifts, and obtained time-resolved single-cell measurements of metabolic activities using nanometre-scale secondary ion mass spectrometry (NanoSIMS). We found that the level of NH4+ limitation shapes phenotypic heterogeneity in N2 fixation. In turn, the N2 fixation rate of single cells during NH4+ limitation correlates positively with their growth rate after a shift to NH4+ depletion, experimentally demonstrating the benefit of heterogeneity. The results indicate that phenotypic heterogeneity is a general solution to two important ecological challenges - nutrient limitation and fluctuations - that many microorganisms face. Currently, we use NanoSIMS to develop a new approach that defines functionally-relevant, phenotypic biodiversity in microbial systems. In the last part of my presentation, I will highlight why the concept of phenotypic diversity is relevant for the understanding of antimicrobial resistance. T2 - Berlin Seminar for Resistance Research at FU Berlin Veterinary Medicine CY - Berlin, Germany DA - 01.03.2018 KW - Antimicrobial Resistance KW - Metabolism KW - Phenotypic diversity PY - 2018 AN - OPUS4-44597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Single-cell trait-based biodiversity in microbial communities and its link to ecosystem functioning in a stratified lake N2 - A fundamental question in ecology is how biodiversity affects ecosystem function. Biodiversity is commonly estimated based on genetic variation. We investigated a new approach that defines and measures biodiversity in complex microbial communities. We used the variation in multiple functionally-relevant, phenotypic traits measured in parallel in single cells as a metric for microbial phenotypic diversity. We studied phenotypic diversity and ecosystem functioning throughout different photosynthetic layers dominated by divergent microbial communities in the gradient of Lago di Cadagno. We determined genetic diversity by 16S and 18S amplicon sequencing and bulk ecosystem functioning (photosynthesis). In addition, we determined phenotypic diversity using single-cell technologies such as nanometer-scale secondary ion mass spectrometry (NanoSIMS) correlated with confocal laser scanning microscopy (CLSM) and scanning flow-cytometry. We measured functional trait variation between individuals in 13CO2 fixation, 15NH4+ uptake, and variation in physio-morphological cell traits, such as cell size, shape, and auto-fluorescence for various pigments related to photosynthesis. We used the distances between individuals in a multidimensional trait space to derive phenotypic trait-based diversity indices, such as trait richness, trait evenness, and trait divergence. We find that phenotypic trait divergence associates with ecosystem functioning, whereas genetic diversity does not. Including activity-based, single-cell phenotypic measurements with NanoSIMS provided an additional accuracy to the trait-based diversity assessment and allowed us to formulate hypotheses on the mechanisms that shape the correlation between phenotypic diversity and eco-system function. Together, our results show that phenotypic diversity is a meaningful concept to measure microbial biodiversity and associate it with ecosystem functioning. T2 - 8th Congress of European Microbiologists - FEMS 2019 CY - Glasgow, UK DA - 07.11.2019 KW - NanoSIMS KW - Biodiversity PY - 2019 AN - OPUS4-49077 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Phenotypic diversity in microbial metabolism and antimicrobial resistance N2 - Phenotypic dicersty can emerge in microbial metabolic activties and in persistence against antimicrobials. In this talk, I present two examples of phenotypic heterogeneity and discuss how they might be related. T2 - Workshop on Bacterial adaptation to antimicrobials: environmental, evolutionary and mechanistic aspects CY - FU Berlin, Germany DA - 17.04.2018 KW - Antimicrobial resistance KW - Metabolism KW - Phenotypic diversity PY - 2018 AN - OPUS4-46271 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Resistance selection on antimicrobial surfaces N2 - Antimicrobial surfaces are widely used to reduce the number of bacteria residing in the indoor environment. In this talk, I discuss the risk how these surfaces can lead to the selection of antimicrobial resistant bacteria. T2 - Cost action workshop Amici - Antimicrobial Coatings Applied in Healthcare Settings – Efficacy Testing CY - BAM Unter den Eichen, Berlin, Germany DA - 07.06.2018 KW - Antimicrobial resistance KW - Antimicrobial surfaces KW - Cross-resistance PY - 2018 AN - OPUS4-46272 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Single-cell trait-based biodiversity in microbial communities N2 - A fundamental question in ecology is how biodiversity affects ecosystem function. Biodiversity is commonly estimated based on genetic variation. We investigated a new approach that defines and measures biodiversity in complex microbial communities. We used the variation in multiple functionally-relevant, phenotypic traits measured in parallel in single cells as a metric for microbial phenotypic diversity. We studied phenotypic diversity and ecosystem functioning throughout different photosynthetic layers dominated by divergent microbial communities in the gradient of Lago di Cadagno. We determined genetic diversity by 16S and 18S amplicon sequencing and bulk ecosystem functioning (photosynthesis). In addition, we determined phenotypic diversity using single-cell technologies such as nanometer-scale secondary ion mass spectrometry (NanoSIMS) correlated with confocal laser scanning microscopy (CLSM) and scanning flow-cytometry. We measured functional trait variation between individuals in 13CO2 fixation, 15NH4+ uptake, and variation in physio-morphological cell traits, such as cell size, shape, and auto-fluorescence for various pigments related to photosynthesis. We used the distances between individuals in a multidimensional trait space to derive phenotypic trait-based diversity indices, such as trait richness, trait evenness, and trait divergence. We find that phenotypic trait divergence associates with ecosystem functioning, whereas genetic diversity does not. Including activity-based, single-cell phenotypic measurements with NanoSIMS provided an additional accuracy to the trait-based diversity assessment and allowed us to formulate hypotheses on the mechanisms that shape the correlation between phenotypic diversity and eco-system function. Together, our results show that phenotypic diversity is a meaningful concept to measure microbial biodiversity and associate it with ecosystem functioning. T2 - 17th International Symposium on Microbial Ecology (ISME 17) CY - Leipzig, Germany DA - 12.08.2018 KW - Trait-based ecology KW - Phenotypic diversity KW - Lake Cadagno PY - 2018 AN - OPUS4-46273 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Resistance evolution towards biocides and antimicrobial surfaces N2 - This presentation describes our work at BAM on resistance evolution towards biocides and antimicrobial surfaces. T2 - Break biofilms workshop CY - Vienna, Austria DA - 16.01.2023 KW - Antimicrobial resistance KW - Bacteria KW - Biofilms KW - Biocides PY - 2023 AN - OPUS4-57857 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Die Entstehung von antimikrobiellen Resistenzen durch die Verwendung von Bioziden N2 - Dieser Vortrag gibt einen Überblick über die BAM und die Aktivitäten im Bereich Biozidresistenz. T2 - Berliner Hochschule für Technik Studiengang Biotechnologie CY - Berlin, Germany DA - 05.05.2023 KW - Antimikrobielle Resistenz KW - Antmikrobielle Oberflächen KW - Standardisierung PY - 2023 AN - OPUS4-57859 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Bakterielle Resistenzen und Toleranzen gegen Desinfektionsmittel und antimikrobielle Oberflächen N2 - Dieser Vortrag beschreibt die Entstehung von bakteriellen Resistenzen und Toleranzen gegen Desinfektionsmittel und antimikrobielle Oberflächen. T2 - Fachtagung für Krankenhaushygiene der Deutschen Gesellschaft für Krankenhaushygiene CY - Essen, Germany DA - 12.05.2023 KW - Antimikrobielle Resistenz KW - Antmikrobielle Oberflächen KW - Standardisierung KW - Biozide PY - 2023 AN - OPUS4-57860 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Risk Assessment of Biocide Resistance N2 - This presentation details approaches for the risk assessment of biocide resistance. Different methods are presented to acquire the necessary data for such risk assessments. T2 - OECD, 7th Meeting of the Working Party on Biocides CY - Leiden, Netherlands DA - 18.09.2023 KW - Antimicrobial resistance KW - Bacteria KW - Standardization KW - Biocides PY - 2023 AN - OPUS4-59062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaut, Valerie A1 - Schreiber, Frank A1 - Vareschi, Silvia T1 - Antibiotic tolerance of biofilms emerging fro multicellular effects of antibiotic efflux N2 - The overarching goal of this project is to develop a predictive model for efflux-mediated antimicrobial tolerance in bacterial multicellular assemblies. Our central hypostasis is that efflux pump activity causes emergent antibiotic tolerance of multicellular bacterial populations, through the interplay of efflux mediated spatial interactions and efflux-linked persistence. To test this hypothesis, we will use a combination of microscopy, microbial killing assays, computational modelling, and data analysis, integrating information from 3 types of multicellular assembly: colonies, cell-to-cell interactions in a monolayer microfluidic device, and 3D flow chamber biofilms. Building on our preliminary observations, we will experimentally characterize the link between colony structure and spatial patterns of efflux gene expression in strains that differ in their levels of efflux. We will develop a mathematical model to test whether local growth inhibition of neighbors due to effluxing cells, coupled with local environment-dependent regulation of efflux, can account qualitatively for these results. By including persister cell formation in our model we will predict, and measure, the emergent function of antimicrobial tolerance in our colonies. To fully understand how tolerance emerges from the interplay between efflux-mediated spatial interactions and efflux-linked persister cell formation, we need quantitative measurements at the single cell level. To this end, we will use a microfluidic setup with cells growing in a monolayer to qualify in detail the dependence of efflux expression and persister cell formation on nutrient conditions, the correlation between efflux and persister formation, and the spatial range of efflux-mediated neighbour growth inhibition. To predict and quantitatively understand the emergent multicellular function of tolerance, we will perform individual-based modelling of biofilm growth, using as input the parameters measured on the single-cell level with our microfluidics experiments. Our simulations will predict biofilm spatial structure development, patterns of efflux and persister formation and, ultimately, tolerance to antimicrobial challenge. These predictions will be directly tested in flow-cell biofilm experiments. We are currently generating acrAB-tolC knockout-strain, without efflux activity, and a strain with an inducible acrAB-tolC efflux pump. To distinguish the different strains under the microscope, they were labeled with genes encoding for different fluorescent proteins. All strains are currently characterized in terms of growth, minimum inhibitory concentration of different antimicrobial substances, colony morphology, and biofilm formation ability. On the theoretical side, we are currently working on modeling the system at various scales and degree of detail, ranging from coarse-grained continuum models to stochastic, individual-based models. Some exploratory work was doe to test existing software for individual-based modelling that may be adapted for our purpose. Furthermore, we are in the process of developing more coarse-grained models. This work involves some physiological modelling and literature search, focusing on working mechanisms of efflux pumps and kinetic models for import and export of antibiotics. T2 - SPP Meeting CY - Jena, Germany DA - 04.10.2023 KW - Antibiotic KW - Bioilm KW - Tolerance KW - Efflux PY - 2023 AN - OPUS4-59245 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank A1 - Stephan, Ina T1 - Development of a laboratory method to assess resistance development of microorganisms to biocides – An update N2 - This presentation describes the development of a laboratory method to assess resistance development of microorganisms to biocides and antimicrobial surfaces. T2 - The International Biodeterioration Research Group (IBRG) autumn meeting 2022 CY - Online meeting DA - 11.10.2022 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Standardization KW - Biocides KW - Risk assessment PY - 2022 AN - OPUS4-56264 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank A1 - Schmidt, Selina A1 - Boenke, V. A1 - Stephan, Ina T1 - Development of a laboratory method to assess resistance development of microorganisms to biocides – An update N2 - This presentation describes our efforts at BAM towards the development of a laboratory method to assess resistance development of microorganisms to biocides. T2 - The International Biodeterioration Research Group (IBRG) spring meeting 2023 CY - Online meeting DA - 05.03.2023 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Standardization KW - Biocides PY - 2023 AN - OPUS4-57858 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -