TY - CONF A1 - Schreiber, Frank T1 - Biocide resistance risk assessment N2 - This presentation details the current status of biocide resistance risk assessment. T2 - Risk assessment of biocide and antibiotic resistance CY - Online meeting DA - 09.03.2022 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Standardization KW - Biocides KW - Risk assessment PY - 2022 UR - https://www.gu.se/en/biocide/risk-assessment-of-biocide-and-antibiotic-resistance AN - OPUS4-56235 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Biocides As Drivers For Antimicrobial Resistance Evolution In The Environment N2 - Antimicrobial resistance (AMR) is a global health problem with the environment being an important compartment for the evolution, selection and transmission of AMR. These processes are impacted by pollution with antibiotics. However, biocides used as disinfectants and material preservatives are major pollutants by far excceding the market for antibiotics in terms of mass. Our work shows that biocides have the potential to affect evolutionary processes towards AMR by increasing the rates of de-novo mutation and conjugation. These effects depend on the species and biocidal substance. Importantly, chlorhexidine and quaternary ammonium compounds (QACs) affect rates of mutation and conjugation at environmentally relevant concentrations in E. coli. Moreover, our results show a connection between the RpoS-mediated general stress and the RecA-linked SOS response with increased rates of mutation and conjugation, but not for all biocides. Furthermore, our work highlights the potential of biocides to contribute to selection and transmission of AMR. We show that the application of biocides, especially QAC disinfectants, leads to the rapid evolution of tolerance (i.e. increased survival) in adaptive laboratory evolution (ALE) experiments. The evolved tolerant strains have a selective advantage in the presence of environmentally-relevant concentrations of antibiotics, which could lead to the stabilization of biocide tolerance in environments where biocides and antibiotics co-occur (e.g. wastewater, animal stables). ALE experiments with biocide tolerant strains indicate a decreased evolvability of resistance to antibiotics. Taken together, our work shows the importance of assessing the contribution of biocides on evolution, selection and transmission of AMR in the environment. T2 - 6th Environmental Dimension of Antibiotic Resistance (EDAR6) CY - Gothenburg, Sweden DA - 22.09.2022 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Biofilms KW - Biocides KW - Risk assessment PY - 2022 AN - OPUS4-56262 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Biocide Resistance - Road to Risk Assessment N2 - This presentation details the current status of biocide resistance risk assessment and provides a roadmap for future activities. T2 - OECD, 6th Meeting of the Working Party on Biocides CY - Paris, France DA - 28.09.2022 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Standardization KW - Biocides KW - Risk assessment PY - 2022 AN - OPUS4-56263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank A1 - Stephan, Ina T1 - Development of a laboratory method to assess resistance development of microorganisms to biocides – An update N2 - This presentation describes the development of a laboratory method to assess resistance development of microorganisms to biocides and antimicrobial surfaces. T2 - The International Biodeterioration Research Group (IBRG) autumn meeting 2022 CY - Online meeting DA - 11.10.2022 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Standardization KW - Biocides KW - Risk assessment PY - 2022 AN - OPUS4-56264 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - BIOCIDE N2 - This presentation gives an overview about the BIOCIDE project performed with the Aquatic Pollutants joint call. T2 - Aquatic Pollutants TransNet workshop CY - Online meeting DA - 09.11.2022 KW - Antimicrobial resistance KW - Bacteria KW - Biofilms KW - Biocides KW - Risk assessment KW - Wastewater PY - 2022 AN - OPUS4-56265 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina A1 - Kanaris, Orestis A1 - Nordholt, Niclas A1 - Schreiber, Frank T1 - Effect of biocides on the evolution and spread of resistance N2 - Biocides used as material preservatives are in contact with various environments during direct application or passive leaching from protected materials [1]. Antimicrobial resistance (AMR) is a global health problem and the environment is an important compartment for the evolution and transmission of AMR [2,3]. Soil is an environment with a large reservoir of natural microbial communities and antimicrobial resistance (AMR) genes. Those natural microbial communities are frequently exposed to biocides used as material preservatives. Previous studies have shown that antibiotics, metals and pesticides affect the underlying processes of resistance evolution and spread; namely de novo mutagenesis and horizontal gene transfer by conjugation and transformation in microbial communities. However, it is unknown if active substances used in material preservatives are involved in these processes. We show that biocides used as material preservatives affect rates of mutation and conjugation in microorganism in a species- and substance-dependent manner, while rates of transformation are not directly affected. Our data highlights the importance of assessing the contribution of material preservatives on AMR evolution and spread in the environment. T2 - RokoCon2022 CY - Berlin, Germany DA - 29.09.2022 KW - Biocide KW - Antimicrobial resistance KW - Tolerance KW - Horizontal gene transfer KW - Mutation rate PY - 2022 AN - OPUS4-56431 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina A1 - Schreiber, Frank A1 - Boenke, Viola A1 - Nordholt, Niclas A1 - Kanaris, Orestis A1 - Sündermann, Claudia T1 - Bacterial resistance evolution towards disinfectants and antimicrobial surfaces and development of a standardized test N2 - Question Disinfectants and antimicrobial surfaces (AMCs) are important tools to prevent the spread of pathogens and antimicrobial resistant bacteria. However, concerns have been raised about the possibility for the evolution and selection of resistance against disinfectants and AMCs. In turn, resistance against disinfectants and AMCs can be associated to antibiotic resistance due to cross-resistance - a single mechanism conferring resistance to a disinfectant and an antibiotic- and co-resistance - two distinct mechanisms physically linked on e.g. a plasmid. The risk for resistance and cross-resistance during use of biocides (including disinfectants and AMCs) must be evaluated during authorization according to the EU biocidal product regulation. However, to date there is a lack of standardized methods that support risk assessment during the authorization process. Methods We used adaptive laboratory evolution (ALE) experiments which are based on repeated exposure of bacteria to disinfectants or AMCs. The experiments are followed by phenotypic (antimicrobial susceptibility testing) and genotypic (whole genome sequencing) characterization of the evolved strains. The basic idea of these experiments is to expose bacteria to lethal conditions and select for mutants with increased survival. This approach is fundamentally different to other ALE experiments, which commonly select for increased growth at subinhibitory concentrations. However, selection for increased survival represents a selective pressure that more realistically reflects selection under in-use conditions of disinfectants and AMCs. Results First, we studied adaptation of E. coli during repeated disinfection with benzalkonium chloride in a suspension assay. The experiments showed a 2000-fold increase in survival within 5 exposure cycles. The adaptive changes are linked to highly parallel mutations in genes related to lipid A biosynthesis, less negative cell surface charge, reduced growth rate and increased competitive ability in the presence of certain antibiotics. We use the same approach to develop standardizable ALE experiments based upon accepted standards that are used to determine the efficacy of disinfectants (EN 13697) and antimicrobial surfaces (ISO 22196). The results highlight pronounced adaptation of different test strains towards surface disinfection (benzalkonium chloride and isopropanol) and AMCs (copper). Conclusion Bacteria can adapt with increased survival towards lethal stress imposed by disinfectants and AMCs. The adaptive ability of bacteria to disinfectants and AMCs can be determined in a standardized manner. T2 - 74. Jahrestagung der Deutschen Gesellschaft für Hygiene und Mikrobiologie [DGHM] e. V. CY - Berlin, Germany DA - 05.09.2022 KW - Antimicrobial surfaces KW - ISO22196 KW - Antimicrobial resistance KW - Round robin test PY - 2022 AN - OPUS4-56432 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina A1 - Schreiber, Frank T1 - Effect of biocides on the evolution and spread of resistance N2 - Biocides used as material preservatives are in contact with various environments during direct application or passive leaching from protected materials. Antimicrobial resistance (AMR) is a global health problem and the environment is an important compartment for the evolution and transmission of AMR. Soil is an environment with a large reservoir of natural microbial communities and antimicrobial resistance (AMR) genes. Those natural microbial communities are frequently exposed to biocides used as material preservatives. Previous studies have shown that antibiotics, metals and pesticides affect the underlying processes of resistance evolution and spread; namely de novo mutagenesis and horizontal gene transfer by conjugation and transformation in microbial communities. However, it is unknown if active substances used in material preservatives are involved in these processes. We show that biocides used as material preservatives affect rates of mutation and conjugation in microorganism in a species- and substance-dependent manner, while rates of transformation are not directly affected. Our data highlights the importance of assessing the contribution of material preservatives on AMR evolution and spread in the environment. T2 - Microbiome Network Meeting CY - Berlin, Germany DA - 20.07.2022 KW - Biocides KW - Antimicrobial resistance KW - Horizontal gene transfer KW - Mutation rate PY - 2022 AN - OPUS4-56426 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Selection of resistance by antimicrobials used in coatings N2 - Antimicrobial surfaces have broad use in multiple settings including touch surfaces in hospitals, implanted devices, or consumer products. Their aim is to support existing hygiene procedures, and to help combat the increasing threat of antimicrobial resistance. However, concerns have been raised over the potential selection pressure exerted by such surfaces, which might drive the evolution and spread of antimicrobial resistance. In my presentation, I will highlight the risks and knowledge gaps associated with resistance on antimicrobial surfaces by different processes including evolution by de novo mutations and horizontal gene transfer, and species sorting of inherently resistant bacteria dispersed onto antimicrobial surfaces. The latter process has the potential to select for antibiotic resistance via cross-resistance between traits that confer resistance to both the antimicrobial surface coating and antibiotics. Conditions in which antibiotics and antimicrobial coatings are present simultaneously (e.g. implants) will lead to more complex interactions that can either result in the selection for or against antibiotic resistance. We mapped these interactions between several antimicrobials and antibiotics on growth and selection of Pseudomonas aeruginosa. We find prevalent physiological (i.e. synergy and antagonism) and evolutionary (i.e. cross-resistance and collateral sensitivity) combination effects. Understanding these interactions opens the door to tailor therapeutic interventions to select against resistance. In additions, we need new methods and translational studies that investigate resistance development to antimicrobial surfaces under realistic conditions. Therefore, I will present recent developments in our lab on the development of such a method based on existing efficacy standards. T2 - 2021 Fall Meeting of the European Materials Research Society (E-MRS) CY - Online meeting DA - 20.09.2021 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Biofilms KW - Biocides PY - 2021 AN - OPUS4-53645 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Physiological and evolutionary consequences of exposing Pseudomonas aeruginosa to biocide-antibiotic combinations N2 - Antimicrobials can exert specific physiological effects when used in combination that are different from those when applied alone. These effects include physiological effects (i.e. synergy, antagonism and suppression) as well as evolutionary effects on the selection of resistant strains (i.e. cross-resistance and collateral sensitivity). While combination effects have been extensively mapped for antibiotic-antibiotic combinations, the combination effects of antibiotics with antimicrobials used as biocides or antiseptics have not been systematically investigated. Here, we investigated the physiological and evolutionary consequences of combinations of antibiotics (meropenem, gentamicin and ciprofloxacin) and substances used as biocides or antiseptics (octenidine, benzalkonium chloride, cetrimonium bromide, chlorhexidine, povidone-iodine, silver) on growth and selection of Pseudomonas aeruginosa. We find prevalent physiological combination effects with synergy occurring 6 times and antagonism occurring 10 times. The effects are specific to the antibiotic-biocide combination with meropenem showing a tendency for antagonism with biocides (6 of 7), while gentamicin has a tendency for synergy (5 of 7). A particular strong antagonism is apparent for the meropenem-chlorhexidine combination, for which we conducted an in-depth study on the underlying molecular mechanism using RNASeq. Moreover, we find widespread effects of the biocide-antibiotic combinations on selection of P. aeruginosa strains resistant to the antibiotics, including cross-resistance and collateral sensitivity. In conclusion, antibiotics and biocides or antiseptics exert physiological and evolutionary combination effects on the pathogen P. aeruginosa. These effects have consequences for the efficacy of both types of substances and for the selection of antimicrobial resistant strains in clinical applications with combined exposure (e.g. wound care, coated biomaterials). T2 - Antimicrobial Resistance in Biofilms and on Biomaterials CY - Online meeting DA - 10.06.2021 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Biofilms PY - 2021 AN - OPUS4-53162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank A1 - Stephan, Ina T1 - Development of a laboratory method to assess resistance development of microorganisms to biocides N2 - Bacteria are exposed to biocides through surface disinfection or by antimicrobial surfaces. These stressful environments provide a strong selective pressure for bacteria to adapt. Here, we describe the development of a laboratory method to assess adaption of bacteria by resistance development in response to surface disinfection and antimicrobial surfaces. T2 - OECD, 5th Meeting of the Working Party on Biocides CY - Online meeting DA - 26.05.2021 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Standardization PY - 2021 AN - OPUS4-53163 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank A1 - Stephan, Ina T1 - Development of a laboratory method to assess resistance development of microorganisms to biocides N2 - Bacteria are exposed to biocides through surface disinfection or by antimicrobial surfaces. These stressful environments provide a strong selective pressure for bacteria to adapt. Here, we describe the development of a laboratory method to assess adaption of bacteria by resistance development in response to surface disinfection and antimicrobial surfaces. T2 - The International Biodeterioration Research Group (IBRG) Spring Meeting 2021 CY - Online meeting DA - 28.06.2021 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Standardization PY - 2021 AN - OPUS4-53164 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank A1 - Nordholt, Niclas A1 - Pietsch, Franziska A1 - Heidrich, Gabriele A1 - Ciok, Michal T1 - Physiological and evolutionary consequences of exposing Pseudomonas aeruginosa to biocide-antibiotic combinations N2 - Antimicrobials can exert specific physiological effects when used in combination that are different from those when applied alone. These effects include physiological effects (i.e. synergy, antagonism and suppression) as well as evolutionary effects on the selection of resistant strains (i.e. cross-resistance and collateral sensitivity). While combination effects have been extensively mapped for antibiotic-antibiotic combinations, the combination effects of antibiotics with antimicrobials used as biocides or antiseptics have not been systematically investigated. Here, we investigated the physiological and evolutionary consequences of combinations of antibiotics (meropenem, gentamicin and ciprofloxacin) and substances used as biocides or antiseptics (octenidine, benzalkonium chloride, cetrimonium bromide, chlorhexidine, povidone-iodine, silver) on growth and selection of Pseudomonas aeruginosa. We find prevalent physiological combination effects with synergy occurring 6 times and antagonism occurring 10 times. The effects are specific to the antibiotic-biocide combination with meropenem showing a tendency for antagonism with biocides (6 of 7), while gentamicin has a tendency for synergy (5 of 7). A particular strong antagonism is apparent for the meropenem-chlorhexidine combination, for which we conducted an in-depth study on the underlying molecular mechanism using RNASeq. Moreover, we find widespread effects of the biocide-antibiotic combinations on selection of P. aeruginosa strains resistant to the antibiotics, including cross-resistance and collateral sensitivity. In conclusion, antibiotics and biocides or antiseptics exert physiological and evolutionary combination effects on the pathogen P. aeruginosa. These effects have consequences for the efficacy of both types of substances and for the selection of antimicrobial resistant strains in clinical applications with combined exposure (e.g. wound care, coated biomaterials). T2 - ASM-FEMS World Microbe Forum CY - Online meeting DA - 20.06.2021 KW - Antimicrobial resistance KW - Antagonism KW - Biofilms PY - 2021 AN - OPUS4-53165 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Resistance evolution towards biocides and antimicrobial surfaces N2 - Biocides, including disinfectants and antimicrobial surfaces (AMCs), are important to prevent the spread of pathogens and antimicrobial resistant bacteria via surfaces. However, concerns have been raised about the evolution and selection of resistance against disinfectants and AMCs. In turn, resistance against disinfectants and AMCs can be associated to antibiotic resistance due to cross-resistance and co-resistance. We need to understand the mechanisms and risks of disinfectants and AMCs for resistance and cross-resistance evolution to optimize their application and safeguard their long-term efficacy. We used adaptive laboratory evolution (ALE) experiments based on repeated exposure of bacteria to disinfectants. Our results show that repeated disinfection of E. coli with benzalkonium chloride in suspension results in a 2000-fold increase in survival within 5 exposure cycles. Adaption is linked to the initial presence of persister cells highly tolerant to benzalkonium chloride. We used the same approach to develop standardizable ALE experiments to determine resistance evolution to AMCs. The results highlight rapid adaptation of E. coli and P. aeruginosa towards copper surfaces. Moreover, there are multiple situations in the clinic or in the environment in which biocides and antibiotics co-occur and in which combination effects can shape their antimicrobial activity or their selective effects. Our work with P. aeruginosa shows prevalent combination effects of biocides and antibiotics, ranging from synergy to antagonism and resulting in the selection for or against antibiotic resistant strains. The combination effects are dependent on the biofilm mode-of-growth, manifesting in apparent differences in the structural arrangement of antibiotic sensitive and resistant strains in biofilms exposed to combinations. Furthermore, biocides affect rates of mutation and horizontal gene transfer, thereby having a potential facilitating effect on resistance evolution. Taken together, our work shows that the role of biocides as potential drivers of resistance evolution and selection deserves further study and regulative action. T2 - Eurobiofilms 2022 CY - Palma, Spain DA - 31.08.2022 KW - Antimicrobial resistance KW - Bacteria KW - Biofilms KW - Biocides KW - Antimicrobial surfaces PY - 2022 AN - OPUS4-55608 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kanaris, Orestis A1 - Nordholt, Niclas A1 - Schreiber, Frank T1 - Consequences of benzalkonium chloride tolerance in Escherichia coli: Effects on selection and evolution in the presence of ciprofloxacin N2 - We investigated the selection dynamics between a benzalkonium chloride (BAC)-tolerant Escherichia coli strain (S4) and a sensitive wild type under four conditions: in the absence of antibiotics and in the presence of three different sub-inhibitory concentrations of the antibiotic ciprofloxacin in liquid cultures. The wild type was selected over the BAC-tolerant strain in the absence of antibiotics, while the opposite was observed at all ciprofloxacin concentrations investigated.Furthermore, we assessed the evolvability of resistance of the two strains to inhibitory concentrations of ciprofloxacin by performing a serial dilution evolution experiment with gradually increasing ciprofloxacin concentrations. The wild type had a higher probability to develop resistance to ciprofloxacin than the tolerant strain. By the end of the evolution experiment both strains evolved to grow at the highest ciprofloxacin concentration investigated, which was 2048 ×MIC of the wild type. T2 - 6th international symposium on the environmental dimention of antibiotic resistance-EDAR 6 CY - Gothenburg, Sweden DA - 22.09.2022 KW - Antimicrobial resistance KW - Tolerance KW - Experimental evolution KW - Selection PY - 2022 AN - OPUS4-56808 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina A1 - Schreiber, Frank T1 - Antimicrobial resistance in soil microbes mediated by resistance evolution and horizontal gene transfer (HGT) N2 - Biocides are in contact with soils through direct application and passive leaching from protected materials. Consequently, soil microorganisms are exposed to biocides even though they are not their primary targets. Soil is a large reservoir of microbial diversity and has been hypothesized to be a crucial factor for the evolution and spread of antimicrobial resistance. Currently, there is little knowledge on how biocides used to protect materials affect the evolution and spread of resistance. Thus, our aim is to investigate the risk for the evolution of biocide resistance and cross-resistance to antibiotics. In addition, we aim to elucidate the affect of biocides on the spread of resistance via horizontal gene transfer (HGT). In adaptive laboratory evolution experiments we cultured selected model soil microorganism with representative biocides under selection regimes with increasing and stable biocide concentrations followed by antibiotic and biocide cross-resistance determination. Moreover, we investigate if the selected biocides affect the rates of de novo mutations and HGT of plasmids that carry resistance genes among soil microorganism. Our results show only small increases of biocide resistance during serial transfers under increasing biocide concentrations. One reason for this might be the narrow selective window for biocide resistance due to steep dose-response relationships. Furthermore, our results indicate that a stable low-level biocide regime did not select for high level cross-resistance to antibiotics and other biocides. Moreover, material preservatives affected the rates of HGT via conjugation and the mutation rates at sub-inhibitory concentrations. The results will enable future risk assessment regarding resistance evolution for biocides used as material preservatives. T2 - 4th Evo Eco PhD Meeting CY - Lutherstadt Wittenberg DA - 04.03.2020 KW - Microbiology KW - Biocides KW - Horizontal gene transfer HGT KW - Resistance evolution KW - Antimicrobial resistance PY - 2020 AN - OPUS4-51313 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank A1 - Nordholt, Niclas A1 - Schmidt, Selina A1 - Lewerenz, Dominique T1 - Persistence as a microbial survival strategy against biocides and its link to antibiotic resistance evolution N2 - Background: One cornerstone to prevent the spread of antibiotic resistant bacteria in clinical settings is the application of disinfectants. However, bacteria can evolve resistance to disinfectants, which in turn can confer cross-resistance to antibiotics. Additionally, clonal bacterial populations can display phenotypic heterogeneity with respect to the tolerance of antibiotic stress leading to a prolonged survival of a sub-population; this phenomenon is termed persistence. Persistence to antibiotics is an evolvable trait and can serve as a stepping stone for the evolution of genetically encoded resistance. Until now, there is a lack of systematic studies that investigate if bacterial populations establish persister subpopulations that tolerate disinfectant stress longer than most of the population. Objectives: Our objective is to investigate if persistence is a bacterial survival strategy against disinfectants. Furthermore, we investigate the mechanisms of disinfectant persistence and if persistence can evolve in the face of fluctuating exposure to disinfectants. Lastly, we test if the evolved mechanisms of disinfectant tolerance lead to disinfectant resistance and if they confer cross-tolerance and cross-resistance against antibiotics. Methods: We use time-kill assays in the presence of disinfectants and experimental evolution combined to whole-genome sequencing in the model organism E. coli. Results: We find persister sub-populations against chlorhexidine and quaternary ammonium compounds, but not to alcohols, aldehydes and oxidative compounds. We will present the relationship of mechanisms known to underlie antibiotic persister formation to the formation of persisters against disinfectants. In addition, we will present data from an ongoing evolution experiment for persistence against disinfectants. T2 - 8th Congress of European Microbiologists - FEMS 2019 CY - Glasgow, UK DA - 07.11.2019 KW - Antimicrobial resistance KW - Biocides KW - Persister cells PY - 2019 AN - OPUS4-49081 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank A1 - Nordholt, Niclas A1 - Schmidt, Selina A1 - Lewerenz, Dominique T1 - Persistence as a microbial survival strategy against biocides and its link to antibiotic resistance evolution N2 - Question: One cornerstone to prevent the spread of bacteria in clinical and industrial settings is the application of biocides including disinfectants and preservatives. However, bacteria can evolve resistance to biocides, which in turn can confer cross-resistance to antibiotics. Additionally, clonal bacterial populations can display phenotypic heterogeneity with respect to the tolerance of antibiotic stress leading to a prolonged survival of a sub-population; this phenomenon is termed persistence. Persistence to antibiotics is an evolvable trait and can serve as a stepping stone for the evolution of genetically encoded resistance. Until now, there is a lack of systematic studies that investigate if bacterial populations establish persister subpopulations that tolerate disinfectant stress longer than most of the population. Our objective is to investigate if persistence is a bacterial survival strategy against biocides. Furthermore, we investigate the mechanisms of biocide persistence and if persistence can evolve in the face of fluctuating exposure to biocides. Lastly, we test if the evolved mechanisms of biocide tolerance lead to biocide resistance and if they confer cross-tolerance and cross-resistance against antibiotics. Methods: We use time-kill assays in the presence of biocides and experimental evolution combined to whole-genome sequencing in the model organism E. coli. Results: We find persister sub-populations against chlorhexidine and quaternary ammonium compounds, but not to alcohols, aldehydes and oxidative compounds. We will present the relationship of mechanisms known to underlie antibiotic persister formation to the formation of persisters against biocides. In addition, we will present data from an ongoing evolution experiment for persistence against biocides. Conclusion There is a link between antibiotic and biocide persistence with possible implications for antibiotic resistance evolution and spread. T2 - 5th International Symposium on the Environmental Dimension of Antibiotic Resistance - EDAR 2019 CY - Hong Kong, China DA - 09.06.2019 KW - Antimicrobial resistance KW - Biocides KW - Persister cells PY - 2019 AN - OPUS4-49083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina A1 - Schreiber, Frank T1 - Antimicrobial resistance in soil microbes mediated by resistance evolution and horizontal gene transfer (HGT) N2 - Question: Biocides are in contact with soils through direct application and passive leaching from protected materials. Consequently, soil microorganisms are exposed to toxic biocides even though they are not their primary targets. Soil is a large reservoir of microbial diversity and has been hypothesized to be a crucial factor for the evolution and spread of antimicrobial resistance. Currently, there is little knowledge on how biocides used to protect materials affect the evolution and spread of resistance. Thus, our aim is to investigate the risk for the evolution of biocide resistance and cross-resistance to antibiotics. In addition, we aim to elucidate the affect of biocides on the spread of resistance via horizontal gene transfer (HGT). Methods: In laboratory evolution experiments we culture selected model soil microorganism with representative biocides followed by antibiotic cross-resistance determination and genome sequencing. Moreover, we investigate if the selected biocides affect the HGT frequency of plasmids that carry resistance genes among soil microorganism and the consequences for survival of the affected populations. Results: Our initial results show only small increases of biocide resistance during serial transfers in the presence of biocides. One reason for this might be the narrow selective window for biocide resistance due to steep dose-response relationships. Furthermore, we will present results from ongoing experiments on the effects of material preservatives on HGT frequencies facilitating microbial community adaptation to stress. Conclusions: The results will enable future risk assessment regarding resistance evolution for biocides used as material preservatives. T2 - 8th Congress of European Microbiologists - FEMS 2019 CY - Glasgow, UK DA - 07.07.2019 KW - Biocides KW - Horizontal gene transfer HGT KW - Microbiology KW - Resistance evolution KW - Antimicrobial resistance PY - 2019 AN - OPUS4-49402 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina A1 - Schreiber, Frank T1 - Antimicrobial resistance in soil microbes mediated by resistance evolution and horizontal gene transfer (HGT) N2 - Question: Biocides are in contact with soils through direct application and passive leaching from protected materials. Consequently, soil microorganisms are exposed to toxic biocides even though they are not their primary targets. Soil is a large reservoir of microbial diversity and has been hypothesized to be a crucial factor for the evolution and spread of antimicrobial resistance. Currently, there is little knowledge on how biocides used to protect materials affect the evolution and spread of resistance. Thus, our aim is to investigate the risk for the evolution of biocide resistance and cross-resistance to antibiotics. In addition, we aim to elucidate the affect of biocides on the spread of resistance via horizontal gene transfer (HGT). Methods: In laboratory evolution experiments we culture selected model soil microorganism with representative biocides followed by antibiotic cross-resistance determination and genome sequencing. Moreover, we investigate if the selected biocides affect the HGT frequency of plasmids that carry resistance genes among soil microorganism and the consequences for survival of the affected populations. Results: Our initial results show only small increases of biocide resistance during serial transfers in the presence of biocides. One reason for this might be the narrow selective window for biocide resistance due to steep dose-response relationships. Furthermore, we will present results from ongoing experiments on the effects of material preservatives on HGT frequencies facilitating microbial community adaptation to stress. Conclusions: The results will enable future risk assessment regarding resistance evolution for biocides used as material preservatives. T2 - Symposium für Doktorandinnen und Doktoranden – 2019 CY - Berlin, Germany DA - 27.09.2019 KW - Biocides KW - Horizontal gene transfer HGT KW - Microbiology KW - Resistance evolution KW - Antimicrobial resistance PY - 2019 AN - OPUS4-49404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -