TY - JOUR A1 - Bandow, N. A1 - Aitken, M. D. A1 - Geburtig, Anja A1 - Kalbe, Ute A1 - Piechotta, Christian A1 - Schoknecht, Ute A1 - Simon, Franz-Georg A1 - Stephan, Ina T1 - Using Environmental Simulations to Test the Release of Hazardous Substances from Polymer-Based Products: Are Realism and Pragmatism Mutually Exclusive Objectives? JF - Materials N2 - The potential release of hazardous substances from polymer-based products is currently in the focus of environmental policy. Environmental simulations are applied to expose such products to selected aging conditions and to investigate release processes. Commonly applied aging exposure types such as solar and UV radiation in combination with water contact, corrosive gases, and soil contact as well as expected general effects on polymers and additional ingredients of polymer-based products are described. The release of substances is based on mass-transfer processes to the material surfaces. Experimental approaches to investigate transport processes that are caused by water contact are presented. For tailoring the tests, relevant aging exposure types and release quantification methods must be combined appropriately. Several studies on the release of hazardous substances such as metals, polyaromatic hydrocarbons, flame retardants, antioxidants, and carbon nanotubes from polymers are summarized exemplarily. Differences between natural and artificial exposure tests are discussed and demonstrated for the release of flame retardants from several polymers and for biocides from paints. Requirements and limitations to apply results from short-term artificial environmental exposure tests to predict long-term environmental behavior of polymers are presented. KW - Environmental simulations KW - Polymer-based products KW - Artificial weathering KW - Degradation KW - Leaching KW - Soil contact PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509310 DO - https://doi.org/10.3390/ma13122709 SN - 1996-1944 VL - 13 IS - 12 SP - Paper 2709, 22 PB - MDPI CY - Basel, Switzerland AN - OPUS4-50931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, Beate A1 - Pfeiffer, F. A1 - Dyall-Smith, M. A1 - Kunte, Hans-Jörg T1 - Genome Sequence of Micromonospora aurantiaca Strain G9, a Member of a Bacterial Consortium Capable of Polyethylene Degradation JF - Microbiology Ressource Announcements N2 - Nine different bacterial isolates were recovered from landfills. Each isolate was obtained in pure culture. As a consortium, the bacteria degrade polyethylene. The complete genome sequence of strain G9 was determined by PacBio sequencing. Using the TYGS server for taxonomic classification, strain G9 was assigned to the species Micromonospora aurantiaca. KW - Polyethylene KW - Micromonospora aurantiaca KW - Degradation KW - iChip PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547181 DO - https://doi.org/10.1128/mra.01148-21 SN - 2576-098X VL - 11 IS - 5 SP - 1 EP - 2 PB - American Society for Microbiology CY - Washington, DC AN - OPUS4-54718 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -