TY - JOUR A1 - Usmani, S. A1 - Voss, L. A1 - Stephan, Ina A1 - Hübert, Thomas A1 - Kemnitz, E. T1 - Improved Durability of Wood Treated with Nano Metal Fluorides against Brown-Rot and White-Rot Fungi N2 - Low-water soluble metal fluorides such as magnesium fluoride (MgF2) and calcium Fluoride (CaF2) were evaluated for decay protection of wood. Initially, the biocidal efficacy of nano metal fluorides (NMFs) against wood destroying fungi was assessed with an in-vitro agar test. The results from the test showed that agar medium containing MgF2 and CaF2 was more efficient in preventing fungal decay than stand-alone MgF2 or CaF2. These metal fluorides, in their nanoscopic form synthesized using fluorolytic sol-gel synthesis, were introduced into the sapwood of Scots pine and beech wood and then subjected to accelerated ageing by leaching (EN 84). MAS 19F NMR and X-ray micro CT images showed that metal fluorides were present in treated wood, unleached and leached. Decay resistance of Scots pine and beech wood treated with NMFs was tested against Wood destroying fungi Rhodonia placenta and Trametes versicolor in accordance with EN 113. Results revealed that mass losses were reduced to below 3% in wood treated with the combination of MgF2 and CaF2. It is concluded that NMFs provide full protection to wood even after it has been leached and can be used as wood preservatives in outdoor environments. KW - Nanoparticles KW - Fluoride KW - Wood protection KW - Fluorolytic sol-gel synthesis KW - Brown-rot fungi KW - White-rot fungi KW - Basidiomycetes PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-543877 VL - 12 IS - 3 SP - 1 EP - 11 PB - MDPI AN - OPUS4-54387 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cunliffe, A. J. A1 - Askew, P. D. A1 - Stephan, Ina A1 - Iredale, G. A1 - Cosemans, P. A1 - Simmons, L. M. A1 - Verran, J. A1 - Redfern, J. T1 - How do we determine the efficacy of an antibacterial surface? A review of standardised antibacterial material testing methods N2 - Materials that confer antimicrobial activity, be that by innate property, leaching of biocides or design features (e.g., non-adhesive materials) continue to gain popularity to combat the increasing and varied threats from microorganisms, e.g., replacing inert surfaces in hospitals with copper. To understand how efficacious these materials are at controlling microorganisms, data is usually collected via a standardised test method. However, standardised test methods vary, and often the characteristics and methodological choices can make it difficult to infer that any perceived antimicrobial activity demonstrated in the laboratory can be confidently assumed to an end-use setting. This review provides a critical analysis of standardised methodology used in academia and industry, and demonstrates how many key methodological choices (e.g., temperature, humidity/moisture, airflow, surface topography) may impact efficacy assessment, highlighting the need to carefully consider intended antimicrobial end-use of any product. KW - Antimicrobial materials KW - Antimicrobial testing KW - ISO 22196 KW - Antimicrobial surfaces KW - Antibacterial coatings PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-532138 SN - 2079-6382 VL - 10 IS - 9 SP - 1 EP - 14 PB - MDPI CY - Basel AN - OPUS4-53213 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brischke, C. A1 - Bollmus, S. A1 - Melcher, E. A1 - Stephan, Ina T1 - Biological durability and moisture ynamics of Dawn redwood (Metasequoia glyptostroboides) and Port Orford cedar (Chamaecyparis lawsoniana) N2 - Numerous non-native tree species are given attention with respect to the reforestation of calamity areas in Europe. Among them, several species may form durable wood which can be used for outdoor applications, but differences in wood durability are expected between original and European growth sites. This study aimed at examining the biological durability against wooddestroying fungi and water permeability of German-grown Dawn redwood (Metasequoia glyptostroboides) and Port Orford cedar (Chamaecyparis lawsoniana). The heartwood of both wood species was assigned to durability class 4 (DC 4, less durable) in soil contact and DC 1–4 (very to less durable) against wood-destroying basidiomycetes. However, according to the Meyer-Veltrup model, their material resistance dose was notably higher compared to the reference species Norway spruce (Picea abies), and the resulting service life of above ground structures should be a multiple of the reference. KW - Natural durability KW - Fungal decay KW - Moisture performance KW - Permeability KW - Resistance model KW - Water uptake PY - 2022 U6 - https://doi.org/10.1080/17480272.2022.2101941 SN - 1748-0272 SP - 1 EP - 11 PB - Taylor & Francis CY - London AN - OPUS4-55490 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stephan, Ina A1 - Dimke, Thomas A1 - Guterman, R. A1 - Smith, C. A. A1 - Cataldo, V. A. T1 - Antibacterial and degradable thioimidazolium poly(ionic liquid) N2 - New antibacterial agents are urgently required to fight the emergence of antibiotic-resistant bacteria. We recently synthesized the first thioimidazolium ionene, which has antibacterial properties and can degrade in various media. This dual functionality is crucial in order to limit the environmental impact of these biocides. We have found that our polymer is stronger than benzalkonium chloride (BAC) against Pseudomonas aeruginosa and also readily degrades in the presence of base, while remaining stable in acidic environments. These results highlight a new emerging class of antibacterial degradable polymers. KW - Ionic liquid KW - Antibacterial polymer KW - Amphiphilic polymer KW - Thioimidazolium KW - Degradable polymer KW - Polyioinic liquid PY - 2020 U6 - https://doi.org/10.1021/acssuschemeng.0c02666 VL - 8 IS - 22 SP - 8419 EP - 8424 PB - ACS Publications AN - OPUS4-50982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Redfern, J. A1 - Tucker, J. A1 - Simmons, L. A1 - Askew, P. A1 - Verran, J. A1 - Stephan, Ina T1 - Environmental and experimental factors affecting efficacy testing on nonporous plastic antimicrobial surfaces N2 - Test methods for efficacy assessment of antimicrobial coatings are not modelled on a hospital environment, and instead use high humidity (>90%) high temperature (37 ◦C), and no airflow. Therefore, an inoculum will not dry, resulting in an antimicrobial surface exhibiting prolonged antimicrobial activity, as moisture is critical to activity. Liquids will dry quicker in a hospital ward, resulting in a reduced antimicrobial efficacy compared to the existing test, rendering the test results artificially favourable to the antimicrobial claim of the product. This study aimed to assess how hospital room environmental conditions can affect the drying time of an inoculum, and to use this data to inform test parameters for antimicrobial efficacy testing based on the hospital ward. The drying time of different droplet sizes, in a range of environmental conditions likely found in a hospital ward, were recorded (n = 630), and used to create a model to inform users of the experimental conditions required to provide a drying time similar to what can be expected in the hospital ward. Drying time data demonstrated significant (p < 0.05) variance when humidity, temperature, and airflow were assessed. A mathematical model was created to select environmental conditions for in vitro antimicrobial efficacy testing. Drying time in different environmental conditions demonstrates that experimental set-ups affect the amount of time an inoculum stays wet, which in turn may affect the efficacy of an antimicrobial surface. This should be an important consideration for hospitals and other potential users, whilst future tests predict efficacy in the intended end-use environment. KW - Method development KW - Standardisation KW - Antimicrobial test KW - Environmental conditions KW - Hospital premises PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-472699 SN - 2409-9279 VL - 1 IS - 4 SP - 36, 1 EP - 10 PB - MDPI CY - Internet open accsess AN - OPUS4-47269 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lasota, S. A1 - Horn, M. A1 - Noll, M. A1 - Stephan, Ina A1 - Otto, W. T1 - Copper in wood preservatives delayed wood decomposition and shifted soil fungal but not bacterial community composition N2 - Copper-based fungicides are routinely used for wood and plant protection, which can lead to an enrichment of copper-tolerant microbial communities in soil. To investigate the effect of such wood preservatives on the soil fungal and bacterial community compositions, five different vineyard and fruit-growing soil environments were evaluated using incubation studies over time. Pine sapwood specimens were impregnated with either water or different biocide treatment solutions containing a mixture of copper, triazoles, and quaternary ammonium compounds (CuTriQAC), a mixture of triazoles and quaternary ammonium compounds (TriQAC), or copper alone (Cu). Specimens were incubated in soil from each sample site for 8, 16, 24, and 32 weeks. The effects of preservative treatment on the modulus of elasticity (MOE) of the wood specimens and on the soil fungal as well as bacterial community composition at the soil-wood interface were assessed by quantitative PCR and amplicon sequencing of the fungal internal transcribed spacer (ITS) region and bacterial 16S rRNA gene. Specimens impregnated with CuTriQAC and Cu showed decreased MOE and reduced fungal and bacterial copy numbers over time compared to those impregnated with water and TriQAC. Fungal but not bacterial community composition was significantly affected by wood preservative treatment. The relative abundance of members of the family Trichocomaceae compared to other genera increased in the presence of the Cu and CuTriQAC treatments at three sites, suggesting these to be Cu-tolerant fungi. In conclusion, the copper-containing treatments resulted in marginally increased MOE, lowered microbial gene copy numbers compared to those in the TriQAC and water treatments, and thus enhanced wood protection against soil microbial wood degradation KW - 16S rRNA gene KW - ITS region KW - Amplicon sequencing KW - Community composition KW - Copper-based wood preservatives KW - Soil incubation study PY - 2019 U6 - https://doi.org/10.1128/AEM.02391-18 SN - 1098-5336 SN - 0099-2240 VL - 85 IS - 4 SP - e02391-18, 1 EP - 13 PB - American Society for Microbiology CY - Washington, DC AN - OPUS4-47370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Guterman, R. A1 - Miao, H. A1 - Cataldo, V. A. A1 - Antonietti, M. A1 - Dimke, Thomas A1 - Stephan, Ina T1 - Thioimidazolium salts as a platform for nonvolatile alkylators and degradable antiseptics N2 - ABSTRACT: A collection of thioimidazolium salts were synthesized and used as a new class of nonvolatile alkylating agents. Their nonvolatility prevents exposure during use or handling and are thus drastically safer than conventional alkylating agents. We discovered that thioimidazolium Iodide salts cannot release volatile compounds in the solid state, but instead only decompose when molten. Since decomposition proceeds via alkyl iodide elimination, SN2 of iodide on the thioimidazolium cation is constrained in the solid state, and instead can occur only upon melting when ions are mobile. By smart design of these alkylators, the melting point and thus the decomposition temperature of these salts can be increased from 106 to 169 °C and release negligible volatile organic compounds prior to melting. Thioimidazolium-bis(trifluoromethanesulfonyl)imide (TFSI) ionic liquids act as a completely nonvolatile and air-stable TFSI-based alkylating agent and can be used for high-throughput Synthesis of TFSI ionic liquids without solvent. Alkyl groups from methyl to dodecyl can be transferred to a nucleophile and the product purified by sublimation of the thione byproduct, which can then be recycled. We also found that thioimidazolium salts with a dodecyl chain are bactericidal, yet can hydrolyze in water to form benign neutral products, and thus wont accumulate in the environment. These results demonstrate that thioimidazolium salts are a designable platform for the pursuit of safer and more environmentally friendly alkylating and antiseptic agents. KW - Alkylating agents KW - Decomposition point KW - Melting point KW - Nonvolatile KW - One-step ionic liquids synthesis KW - Antiseptic agents PY - 2018 U6 - https://doi.org/10.1021/acssuschemeng.8b03874 SN - 2168-0485 VL - 6 IS - 11 SP - 15434 EP - 15440 PB - American Chemical Society CY - Washington, DC AN - OPUS4-46904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Usmani, Shirin A1 - Stephan, Ina A1 - Huebert, Thomas A1 - Kemnitz, E. T1 - Nano metal fluorides for wood protection against fungi N2 - Wood treated with nano metal fluorides is found to resist fungal decay. Sol−gel synthesis was used to synthesize MgF2 and CaF2 nanoparticles. Electron microscopy images confirmed the localization of MgF2 and CaF2 nanoparticles in wood. Efficacy of nano metal fluoride-treated wood was tested against brown-rot fungi Coniophora puteana and Rhodonia placenta. Untreated wood specimens had higher mass losses (∼30%) compared to treated specimens, which had average mass loss of 2% against C. puteana and 14% against R. placenta, respectively. Nano metal fluorides provide a viable alternative to current wood preservatives. KW - Brown-rot fungi KW - Coniophora puteana KW - Fluoride nanoparticles KW - Fluorolytic sol−gel KW - Rhodonia placenta KW - SEM wood characterization KW - Wood protection PY - 2018 U6 - https://doi.org/10.1021/acsanm.8b00144 SN - 2574-0970 VL - 2018 SP - 1 EP - 6 PB - American Chemical Society (ACS) CY - Washington DC, US AN - OPUS4-44730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bandow, N. A1 - Aitken, M. D. A1 - Geburtig, Anja A1 - Kalbe, Ute A1 - Piechotta, Christian A1 - Schoknecht, Ute A1 - Simon, Franz-Georg A1 - Stephan, Ina T1 - Using Environmental Simulations to Test the Release of Hazardous Substances from Polymer-Based Products: Are Realism and Pragmatism Mutually Exclusive Objectives? N2 - The potential release of hazardous substances from polymer-based products is currently in the focus of environmental policy. Environmental simulations are applied to expose such products to selected aging conditions and to investigate release processes. Commonly applied aging exposure types such as solar and UV radiation in combination with water contact, corrosive gases, and soil contact as well as expected general effects on polymers and additional ingredients of polymer-based products are described. The release of substances is based on mass-transfer processes to the material surfaces. Experimental approaches to investigate transport processes that are caused by water contact are presented. For tailoring the tests, relevant aging exposure types and release quantification methods must be combined appropriately. Several studies on the release of hazardous substances such as metals, polyaromatic hydrocarbons, flame retardants, antioxidants, and carbon nanotubes from polymers are summarized exemplarily. Differences between natural and artificial exposure tests are discussed and demonstrated for the release of flame retardants from several polymers and for biocides from paints. Requirements and limitations to apply results from short-term artificial environmental exposure tests to predict long-term environmental behavior of polymers are presented. KW - Environmental simulations KW - Polymer-based products KW - Artificial weathering KW - Degradation KW - Leaching KW - Soil contact PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-509310 SN - 1996-1944 VL - 13 IS - 12 SP - Paper 2709, 22 PB - MDPI CY - Basel, Switzerland AN - OPUS4-50931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -