TY - JOUR A1 - Heisterkamp, I. A1 - Gartiser, S. A1 - Schoknecht, Ute A1 - Happel, O. A1 - Kalbe, Ute A1 - Kretzschmar, M. A1 - Ilvonen, O. T1 - Investigating the ecotoxicity of construction product eluates as multicomponent mixtures N2 - The release of hazardous compounds from construction products can harm human health and the environment. To improve the sustainability of construction materials, the leaching of substances from construction products and their potential environmental impact should be assessed. Twenty-seven construction products from different product groups were examined with a combination of standardized leaching tests (dynamic surface leaching test and percolation test) and biotests (algae, daphnia, fish egg, luminescent bacteria, umu and Ames fluctuation tests). To identify the released substances, extensive qualitative and quantitative chemical analyses were performed, including gas chromatographic and liquid chromatographic screening techniques. Results: Many of the tested eluates caused signifcant ecotoxic efects. Particularly high ecotoxicities were observed for grouts (lowest ineffective dilution (LID) up to 16384) and cork granules (LID up to 24578). The results of ecotoxicity tests allow the prioritization of the eluates that should be subjected to detailed chemical analyses. Organic screening by different methods and ranking the identifed substances based on recorded hazard classification is a suitable approach to identify the relevant toxic substances. Conclusions: Determining the ecotoxicity of eluates from construction products records the summary effect of all leachable substances. This instrument is especially useful for construction products of complex and largely unknown composition. The ecotoxicological and the chemical–analytical approach complement each other in an ideal way to characterize the potential hazard of eluates from construction products and to identify the environmentally hazardous components in these eluates. Our results confirm that the proposed harmonized methods for testing eluate toxicity are an adequate and applicable procedure to move toward a more sustainable way of building and to reduce toxic effects of construction products in their use phase in the environment. KW - Construction products KW - Building materials KW - Ecotoxicity KW - Biotests KW - Leaching KW - Eluates KW - Chemical analysis KW - Analytical screening techniques KW - Mixture toxicity PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-568864 VL - 35 IS - 1 SP - 1 EP - 20 PB - Springer AN - OPUS4-56886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Franz-Georg A1 - Scholz, Philipp T1 - Assessment of the Long-Term Leaching Behavior of Incineration Bottom Ash: A Study of Two Waste Incinerators in Germany N2 - The long-term leaching behavior of incineration bottom ash (IBA) was studied with large-scale samples from two German waste incinerators with grate technology. The observation period was up to 281 days. The aging processes proceeded faster in the outdoor storage of the samples. The dominant factor in the leaching behavior is the pH, which starts at values above 12 and decreases to values below 10 (outdoors, <11 indoors). Most heavy metals exhibit minimum solubility in this pH range. The solubility of Sb depends on the prevailing Ca concentration, due to the formation of low-soluble Ca antimonate. The very low sulfate concentrations observed in the leaching tests with fresh IBA could be explained by the presence of ettringite. In the course of the aging reaction, ettringite is transformed into gypsum. The results from batch tests were compared with those from column tests, showing reasonable agreement. Leaching dynamics can be better followed with column tests. All results confirm that the use of IBA is possible under German law. KW - Aging KW - Incineration bottom ash KW - Leaching KW - Secondary building materials PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-591599 SN - 2076-3417 VL - 13 IS - 24 SP - 1 EP - 15 PB - MDPI AG CY - Basel AN - OPUS4-59159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Franz-Georg A1 - Kalbe, Ute T1 - Case Study on Secondary Building Materials for a Greener Economy N2 - Half of global material consumption involves mineral material. The circularity is still low so that the enhanced use of secondary building material is required to close loops. Three different secondary building materials are discussed based on exemplary research results: construction and demolition waste (C&D waste), soil-like material, and incineration bottom ash (IBA). Focus was placed on the environmental compatibility of the materials examined mainly by standardized leaching tests. C&D waste was investigated after a wet treatment using a jigging machine, and soil-like material and IBA were characterized with respect to their material composition. Their environmental compatibilities in particular were studied using standard leaching tests (batch tests and column tests). It was concluded that soil-like material can mostly be utilized even when the precautionary limit values set are exceeded by a factor of less than two. For C&D waste, the fine fraction below 2 mm and the content of brick material is problematic. IBA fulfills quality level “HMVA-2” following German regulations. Improved levels of utilization might be achievable with better treatment technologies. KW - Incineration bottom ash KW - Soil-like material KW - Leaching KW - Circular economy PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-576343 SN - 2076-3417 VL - 13 IS - 10 SP - 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-57634 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN ED - Simon, Franz-Georg ED - Kalbe, Ute T1 - Measurement of the Environmental Impact of Materials N2 - Throughout their life cycles—from production, usage, through to disposal—materials and products interact with the environment (water, soil, and air). At the same time, they are exposed to environmental influences and, through their emissions, have an impact on the environment, people, and health. Accelerated experimental testing processes can be used to predict the long-term environmental consequences of innovative products before these actually enter the environment. We are living in a material world. Building materials, geosynthetics, wooden toys, soil, nanomaterials, composites, wastes and more are research subjects examined by the authors of this book. The interactions of materials with the environment are manifold. Therefore, it is important to assess the environmental impact of these interactions. Some answers to how this task can be achieved are given in this Special Issue. KW - Leaching KW - Recycling KW - Emissions PY - 2023 UR - https://www.mdpi.com/books/book/6546 SN - 978-3-0365-5983-4 SN - 978-3-0365-5984-1 U6 - https://doi.org/10.3390/books978-3-0365-5983-4 SP - 1 EP - 264 PB - MDPI CY - Basel ET - 1 AN - OPUS4-56770 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -