TY - JOUR A1 - Bandow, Nicole A1 - Gartiser, S. A1 - Ilvonen, O. A1 - Schoknecht, Ute T1 - Evaluation of the impact of construction products on the environment by leaching of possibly hazardous substances N2 - Construction products are in contact with water (e.g., rain, seepage water) during their service lifetime and may release potentially harmful compounds by leaching processes. Monitoring studies showed that compounds attributed to construction products are found in storm water and the receiving bodies of water and that the release of biocides in urban areas can be comparable to the input of pesticides from agricultural uses. Therefore, a prospective risk assessment of such products is necessary. Laboratory leaching tests have been developed by the Technical Committee CEN/TC 351 and are ready to use. One major task in the future will be the evaluation of the leaching test results, as concentrations found in laboratory experiments are not directly comparable to the field situations. Another Task will be the selection of compounds to be considered for construction products, which are often a complex mixture and contain additives, pigments, stabilization agents, etc. The formulations of the products may serve as a starting point, but total content is a poor predictor for leachability, and analysis of the eluates is necessary. In some cases, nontargeted approaches might be required to identify compounds in the eluates. In the identification process, plausibility checks referring to available information should be included. Ecotoxicological tests are a complementary method to test eluates, and the combined effects of all compounds—including Degradation products—are included. A bio test battery has been applied in a round robin test and was published in a guidance document. Published studies on the ecotoxicity of construction products show the tests’ suitability to distinguish between products with small and larger effects on the environment. KW - Prospective risk assessment KW - Groundwater KW - Surface water KW - Soil KW - Ecotoxicological tests KW - Targeted and nontargeted PY - 2018 U6 - https://doi.org/10.1186/s12302-018-0144-2 SN - 2190-4715 SN - 2190-4707 VL - 30 SP - Article 14, 1 EP - 12 PB - SpringerOpen CY - London AN - OPUS4-44914 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schoknecht, Ute A1 - Mathies, Helena T1 - Transformation of biocides in organic coatings due to UV radiation and water contact N2 - Transformation of carbendazim, diuron, octylisothiazolinone and terbutryn was investigated in two paints containing either white titanium dioxide or a red iron oxide pigment. Test specimens of these coatings on glass were exposed to water contact and UVA-radiation under laboratory conditions. Panels of birch plywood were coated and exposed to natural weather conditions in a field experiment. Concentrations of biocides and transformation products were analysed in leachates from laboratory tests, runoff samples and remaining coatings. Water contact, UVA radiation as well as pigments in the paints affected the pattern and amount of transformation products. T2 - Advanced Coationgs Technology '18 CY - Sosnowiec, Poland DA - 13.11.2018 KW - Biocide KW - Transformation KW - Weathering KW - UV radiation PY - 2018 AN - OPUS4-46648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Urbanczyk, M.M. A1 - Bester, K. A1 - Borho, N. A1 - Schoknecht, Ute A1 - Bollmann, U.E. T1 - Influence of pigments on phototransformation of biocides in paints N2 - Biocides are commonly applied to construction materials such as facade renders and paints in order to protect them from microbial spoilage. These renders and paints are exposed to weathering conditions, e.g., sunlight and rain. Pigments are interacting intensively with the spectrum of the incoming light; thus, an effect of paint pigments on phototransformation rates and reaction pathways of the biocides is hypothesized. In this study, the phototransformation of four commonly used biocides (carbendazim, diuron, octylisothiazolinone (OIT) and terbutryn) in four different paint formulations differing solely in pigments (red and black iron oxides, white titanium dioxide, and one pigment-free formulation) were investigated. Paints surfaces were irradiated under controlled conditions. The results show that biocides degrade most rapidly in the pigment-free formulation. The degradation in the pigment-free formulation followed a first-order kinetic model with the respective photolysis rate constants: kp,Diuron=0.0090 h−1, kp,OIT=0.1205 h−1, kp,Terbutryn=0.0079 h−1. Carbendazim concentrations did not change significantly. The degradation was considerably lower in the pigment-containing paints. The determination of several phototransformation products of terbutryn and octylisothiazolinone showed different transformation product ratios dependent on the pigment. Consequently, pigments not only reflect the incoming light, but also interact with the biocide photodegradation. KW - OIT KW - Terbutryn KW - Indirect photolysis KW - Construction materials PY - 2019 U6 - https://doi.org/10.1016/j.jhazmat.2018.10.018 SN - 0304-3894 VL - 364 SP - 125 EP - 133 PB - Elsevier AN - OPUS4-46328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Uhlig, S. A1 - Colson, B. A1 - Schoknecht, Ute T1 - A mathematical approach for the analysis of data obtained from the monitoring of biocides leached from treated materials exposed to outdoor conditions N2 - Leaching processes are responsible for the release of biocides from treated materials into the environment. Adequate modeling of emission processes is required in order to predict emission values in the framework of the risk assessment of biocidal products intended for long-term service life. Regression approaches have been applied to data obtained from the long-term monitoring of biocide emissions in experiments involving semi-field conditions. Due to the complex interaction of different underlying mechanisms such as water and biocide diffusion and desorption, however, these attempts have proven to be of limited usefulness e at least, for the available biocide emission data. It seems that the behavior of the biocide emission curve depends to a considerable extent on whichever underlying mechanism is slowest at a given point in time, thus limiting the amount of biocide available for release. Building on results obtained in the past few years, the authors propose a criterion for determining which mechanism controls the leaching process at a given point in time based on the slope of the log-log emission curve. In addition, a first-order approximation of this slope value is presented which displays advantages both in terms of computability and interpretability. Finally, an algorithm for the determination of breakpoints in the slope of the log-log emission curve is presented for the demarcation of phases within which one mechanism acts as a limiting factor. KW - Biocides KW - Leaching KW - Weathering KW - Mathematical analysis PY - 2019 U6 - https://doi.org/10.1016/j.chemosphere.2019.04.102 SN - 0045-6535 SN - 1879-1298 VL - 228 SP - 271 EP - 277 PB - Elsevier AN - OPUS4-47886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bandow, N. A1 - Aitken, M. D. A1 - Geburtig, Anja A1 - Kalbe, Ute A1 - Piechotta, Christian A1 - Schoknecht, Ute A1 - Simon, Franz-Georg A1 - Stephan, Ina T1 - Using Environmental Simulations to Test the Release of Hazardous Substances from Polymer-Based Products: Are Realism and Pragmatism Mutually Exclusive Objectives? N2 - The potential release of hazardous substances from polymer-based products is currently in the focus of environmental policy. Environmental simulations are applied to expose such products to selected aging conditions and to investigate release processes. Commonly applied aging exposure types such as solar and UV radiation in combination with water contact, corrosive gases, and soil contact as well as expected general effects on polymers and additional ingredients of polymer-based products are described. The release of substances is based on mass-transfer processes to the material surfaces. Experimental approaches to investigate transport processes that are caused by water contact are presented. For tailoring the tests, relevant aging exposure types and release quantification methods must be combined appropriately. Several studies on the release of hazardous substances such as metals, polyaromatic hydrocarbons, flame retardants, antioxidants, and carbon nanotubes from polymers are summarized exemplarily. Differences between natural and artificial exposure tests are discussed and demonstrated for the release of flame retardants from several polymers and for biocides from paints. Requirements and limitations to apply results from short-term artificial environmental exposure tests to predict long-term environmental behavior of polymers are presented. KW - Environmental simulations KW - Polymer-based products KW - Artificial weathering KW - Degradation KW - Leaching KW - Soil contact PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-509310 SN - 1996-1944 VL - 13 IS - 12 SP - Paper 2709, 22 PB - MDPI CY - Basel, Switzerland AN - OPUS4-50931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schoknecht, Ute A1 - Drescher, P. A1 - Fischer, M. A1 - Fürhapper, C. A1 - Gunschera, J. A1 - Hill, R. A1 - Melcher, E. A1 - Wegner, R. A1 - Wilken, U. A1 - Wittenzellner, J. T1 - Suitability of analytical methods to determine tebuconazole, propiconazole and permethrin in aged wood samples N2 - The suitability of common analytical methods for the determination of active substances from wood preservatives in aged wood samples was investigated during an interlaboratory study. Permethrin, propiconazole and tebuconazole were quantified in 1.5 and 8 year-old wood samples by gas chromatography and liquid chromatography. Generally, the applied Methods yielded reliable results for these samples. However, wood components can coelute with propiconazole and tebuconazole during liquid chromatography. Optimization of separation might be required if UV detection is applied. KW - Wood samples KW - Biocides KW - Analytical methods PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-503959 VL - 78 IS - 2 SP - 271 EP - 279 PB - Springer CY - Heidelberg AN - OPUS4-50395 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heisterkamp, I. A1 - Ratte, M. A1 - Schoknecht, Ute A1 - Gartiser, S. A1 - Kalbe, Ute A1 - Ilvonen, O. T1 - Ecotoxicological evaluation of construction products: inter-laboratory test with DSLT and percolation test eluates in an aquatic biotest battery N2 - Background A European inter-laboratory test with 29 participating laboratories investigated whether a battery of four ecotoxicological tests is suitable for assessing the environmental compatibility of construction products. For this purpose, a construction product was investigated with the dynamic surface leaching test (DIN CEN/TS 16637-2) and the percolation test (DIN CEN/TS 16637-3). The eluates were produced centrally by one laboratory and were tested by the participants using the following biotests: algae test (ISO 8692), acute daphnia test (ISO 6341), luminescent bacteria test (DIN EN ISO 11348), and fish egg test (DIN EN ISO 15088). As toxicity measures, EC50 and LID values were calculated. Results Toxic effects of the eluates were detected by all four biotests. The bacteria test was by far the most sensitive, followed by the algae test and the daphnia test; the fish egg test was the least sensitive for eluates of both leaching tests. The toxicity level of the eluates was very high in the bacteria, daphnia, and algae test, with lowest ineffective dilution values of LID = 70 to LID = 13,000 and corresponding EC50 values around or even below 1 volume percent. The reproducibility (approximated by interlaboratory variability) of the biotests was good (< 53%) to very good (< 20%), regardless of the toxicity level of the eluates. The reproducibility of the algae test was up to 80%, and thus still acceptable. Conclusion It can be confirmed that the combination of leaching and ecotoxicity tests is suitable to characterize with sufficient reproducibility the environmental impact posed by the release of hazardous substances from construction products. KW - Inter-laboratory test KW - Construction products KW - Leaching tests KW - Ecotoxicity tests KW - Grouts PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-529198 VL - 33 IS - 1 SP - Article number: 75 PB - Springer AN - OPUS4-52919 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schoknecht, Ute A1 - Mathies, Helena A1 - Lisec, Jan T1 - Leaching and transformation of film preservatives in paints induced by combined exposure to ultraviolet radiation and water contact under controlled laboratory conditions N2 - Stormwater from urban areas can transport biocidally active substances and related transformation products from buildings into the environment. The occurrence of these substances in urban runoff depends on the availability of water, and on ultraviolet radiation exposure that causes photolytic reactions. In a systematic laboratory study, painted test specimens were exposed to either ultraviolet radiation, water contact, or a combination of both. Leaching of the biocidally active substances carbendazim, diuron, octylisothiazolinone, terbutryn, and selected transformation products of terbutryn and diuron were observed under various exposure conditions. Remaining concentrations of these substances in the paint were quantified. It was demonstrated that the distribution of active substances and transformation products in eluates and in the coatings themselves differs with exposure conditions. Strategies for environmental monitoring of biocide emissions need to consider the most relevant transformation products. However, environmental concentrations of biocidally active substances and transformation products depend on earlier exposure conditions. As a consequence, monitoring data cannot describe emission processes and predict expected leaching of biocidally active substances from buildings if the data are collected only occasionally. KW - Substance release KW - Construction products KW - Biocides KW - Transformation KW - UV radiation KW - Water contact PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-532114 SN - 2073-4441 VL - 13 IS - 17 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-53211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schoknecht, Ute T1 - The Impact of Weather Conditions on Biocides in Paints N2 - Aim. The European biocidal products regulation requires environmental risk assessments for biocidal products under service conditions. This is only possible, if processes that lead to biocide emissions into the environment are understood and can be reasonably predicted. Actual emissions due to leaching result from different processes that are affected by material properties and environmental conditions. Transformation of biocides can affect emissions considerably. Leaching and possible transformation of the film preservatives carbendazim, diuron, OIT and terbutryn in paints was observed under laboratory and field conditons in order to investigate the influence of different factors, e.g. water contact and radiation on biocide emissions. The paints contained either white titanium dioxide or a red iron oxide pigment to check whether pigments affect leaching processes. Methods. Test specimens of a water-based styrene acrylic dispersion paint on glass were exposed to UVA-radiation in a UV weathering device and/or exposed to water contact by immersion events on the basis of the European standard EN 16105. Plywood panels were coated and exposed to natural weather conditions in a semi-field experiment. Concentrations of biocides and transformation products were analysed in leachates from laboratory tests, runoff samples and remaining coatings. Results. The impact of weathering conditions on transformation processes differs for the investigated active substances. Water contact, radiation as well as pigments in the paints determine the pattern and amount of transformation products on coatings, leachates and runoff water. Observations from laboratory and field experiments were compared. It proved that results from laboratory tests support understanding of data from field experiments. Detailed knowledge on the fate of active substances under environmental conditions supports manufacturers to develop safe applications of film preservatives and authorities to evaluate its environmental impact. T2 - European Technical Coatings Congress 2022 CY - Kraków, Poland DA - 12.07.2022 KW - Paints KW - Biocides KW - Transformation KW - Emission PY - 2022 AN - OPUS4-55274 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schoknecht, Ute A1 - Kalbe, Ute A1 - Happel, O. T1 - Combination of leaching tests with ecotoxicity and chemical analysis – lessons learnt N2 - The presentation describes analytical methods to characterize eluates from leaching tests and identify organic substances in leachates. Chances to obtain complementary information from ecotoxtests and chemical analysis are discussed. T2 - Workshop: Ecotoxicological evaluation of construction products – test results, implementation in Guidance, Technical Standards and Ecolabelling CY - Online meeting DA - 21.03.2022 KW - Leaching KW - Ecotoxicity KW - Construction products PY - 2022 AN - OPUS4-55276 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -