TY - CONF A1 - Bresch, Harald A1 - Schwirn, K. A1 - Kuhlbusch, T. A1 - Völker, D. T1 - OECD TG 125 Particle size and size distribution of Nanomaterials N2 - This presentation was held in an OECD Webinar introducing the newly developed and published OECD TG 125 on particle size and size distribution. The presentation is explaining the structure if the TG 125 and addresses all included methods and methodologies in a short and understandable way for the broader public. The presentation includes sections about nano-particles and nano-fibres. T2 - Webinar Series on Testing and Assessment Methodologies CY - Online meeting DA - 07.02.2023 KW - Nano KW - Nanomaterials KW - OECD KW - Test guideline KW - Size PY - 2023 UR - https://www.oecd.org/chemicalsafety/nanomet/presentations-webinar-nanomaterials-particle-size-distribution-test-guideline-125.pdf AN - OPUS4-58447 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald T1 - OECD Prüfrichtlinie 125 N2 - Diese Präsentation ist eine Einführung in die OECD TG 125 zur Bestimmung der Partikelgrößen von Nanomaterialien. Es wird auf die verchiedenen Probleme der Partikelgrößenbestimmung eingegangen wie z.B. verschiedene Oberflächenschichten, Äquivalenzdurchmesser und Verteilungsfunktionen. Gleichzeitig werden die neuen Begrifflichkeiten eingeführt, die in der TG 125 definiert neu werden. T2 - BAM Akademie Digitaler Info-Tag "Nano or not Nano" CY - Online meeting DA - 16.02.2023 KW - Nano KW - Partikel KW - Größe KW - Partikeldurchmesser KW - Äquivalenzdurchmesser PY - 2023 AN - OPUS4-58449 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bresch, Harald A1 - Hodoroaba, Vasile-Dan A1 - Schmidt, Alexandra A1 - Rasmussen, K. A1 - Rauscher, H. T1 - Counting Small Particles in Electron Microscopy Images — Proposal for Rules and Their Application in Practice N2 - Electron microscopy (EM) is the gold standard for the characterisation of the morphology (size and shape) of nanoparticles. Visual observation of objects under examination is always a necessary first step in the characterisation process. Several questions arise when undertaking to identify and count particles to measure their size and shape distribution. In addition to challenges with the dispersion and identification of the particles, more than one protocol for counting particles is in use. This paper focuses on precise rules for the counting of particles in EM micrographs, as this influences the measurement accuracy of the number of particles, thus implicitly affecting the size values of the counted particles. We review and compare four different, commonly used methods for counting, which we then apply in case studies. The impact of the selected counting rule on the obtained final particle size distribution is highlighted. One main aim of this analysis is to support the application of a specific, well-defined counting approach in accordance with regulatory requirements to contribute to achieving more reliable and reproducible results. It is also useful for the new harmonised measurement procedures for determining the particle size and particle size distribution of nanomaterials. KW - Nano KW - Particle size distribution KW - Nanoparticle KW - Nanomaterial KW - OECD PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-551891 SN - 2079-4991 VL - 12 IS - 13 SP - 2238 PB - MDPI CY - Basel AN - OPUS4-55189 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bresch, Harald A1 - Schmidt, Alexandra A1 - Kämpf, K. A1 - Bachmann, V. A1 - Peters, T. A1 - Kuhlbusch, T. T1 - Test Guideline No. 125 - Nanomaterial Particle Size and Size Distribution of Nanomaterials N2 - The OECD Working Party on Manufactured Nanomaterials (WPMN) has actively worked towards understanding possible safety issues for manufactured nanomaterials and has contributed significantly to resolving these by developing Test Guidelines, Guidance Documents, Test Reports and other publications with the aim of a safe use of manufactured nanomaterials. To address the specific needs of manufactured nanomaterials, the OECD Test Guideline No. 110 “Particle Size Distribution/Fibre Length and Diameter Distributions” was identified as one of the test guidelines (TGs) to require an update. The current TG 110 (adopted in 1981) is only valid for particles and fibres with sizes above 250 nm. The WPMN prioritised to either update TG 110 to be applicable also to particles at the nanoscale or draft a new nanomaterial specific (TG). Eventually, it was decided to develop a new TG that covers the size range from 1 nm to 1000 nm, intended for particle size and particle size distribution measurements of nanomaterials. Paragraph 11 provides further justification on the need for such measurements for nanomaterials. This TG overlaps with TG 110 in the size range from 250 nm to 1000 nm. When measuring particulate or fibrous materials, the appropriate TG should be selected depending on the size range of particles tested. In line with TG 110, the new TG for nanomaterials includes separate parts for particles and fibres. For the part of this TG which addresses particles, several methods applicable to nanomaterials were reviewed and included to take into account developments since 1981 when the TG 110 was adopted. This TG includes the following methods: Atomic Force Microscopy (AFM), Centrifugal Liquid Sedimentation (CLS)/Analytical Ultracentrifugation (AUC), Dynamic Light Scattering (DLS), Differential Mobility Analysis System (DMAS), (Nano)Particle Tracking Analysis (PTA/NTA), Small Angle X-Ray Scattering (SAXS), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). The method Single Particle Inductively Coupled Plasma Mass Spectrometry (sp-ICP-MS) could not be sufficiently validated within the interlaboratory comparison (ILC) carried out for the different methods in this TG (see also paragraph 6 for further details on the ILC). Applicability of sp-ICP-MS is strongly limited to nanomaterials with high mass values in combination with a sufficiently high particle size. However, the general method ICP-MS is widely used and the sp-mode for the size measurement of specific nanomaterials was successfully performed in ILCs elsewhere. The method is therefore included in the Appendix Part C of this TG, which further details the limitations of sp-ICP-MS. For measuring the diameter and length of fibres, analysing images captured with electron microscopy is currently the only method available. This TG includes Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). To test the validity of this TG, an ILC was performed. Test materials were chosen to reflect a broad range of nanomaterial classes, e.g. metals, metal oxides, polymers and carbon materials. Where possible, well-characterised test materials were used. Additionally, the test materials were chosen to reflect a broad range of sizes representing the size range 1 nm to 1000 nm. Specifically for fibres, a broad range of aspect ratios was included (length/diameter of 3 to > 50). Some of the test materials used are commercially available and further references are given in the validation report of the ILC. Sample preparation for physical chemical characterisation is critical for all listed methods. Due to the differences between individual nanomaterials and due to the wide range of individual material properties it is impossible to have a generic protocol to obtain the best possible sample preparation for every nanomaterial. Therefore, a generic protocol on sample preparation is not part of this TG. Information on sample preparation is given in the paragraphs 25-29, 33, 34 and 39 for particles and in paragraphs 159) for fibres. Further information on sample preparation of nanomaterials for physical chemical characterisation can be found in the OECD Guidance on Sample Preparation and Dosimetry for the Safety Testing of Manufactured Nanomaterials and elsewhere. KW - Nano KW - Nanomaterial KW - Nanoparticle KW - OECD KW - Test guideline PY - 2022 U6 - https://doi.org/10.1787/20745753 SP - 1 EP - 72 PB - Organisation for Economic Co-operation and Development CY - Paris AN - OPUS4-55191 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald A1 - Kuchenbecker, Petra A1 - Löhmann, Oliver A1 - Rühle, Bastian A1 - Resch-Genger, Ute A1 - Hodoroaba, Vasile-Dan T1 - Schwerpunktthema nano@BAM – Projekt Nanoplattform N2 - Darstellung der Digitalisierung im Rahmen des Themenfeldprojektes Nanoplattform. Es werden beleuchtet: BAM-DataStore, Voraussetzungen für ELNs, Möglichkeitenvon OpenBIS, NFDI-Antrag InnoMatSafety, Digitalisierung von Workflows. T2 - BAM Beiratssitzung Umwelt CY - Online meeting DA - 11.03.2022 KW - Nano KW - Elektronisches Laborbuch KW - Workflows KW - Digitalisierung KW - Standardarbeitsanweisungen PY - 2022 AN - OPUS4-56756 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Übersicht zu Projekten bei DIN/ISO, VAMAS und CCQM N2 - Information der AG-Nano der Bundesoberbehörden zur Strukturierung und den laufenden Aktivitäten bei ISO und DIN sowie VAMAS und CCQM. T2 - Behördenklausur Nano der Bundesoberbehörden CY - Berlin, Germany DA - 14.09.2022 KW - Nano KW - Bundesoberbehörden KW - Behördenklausurtagung PY - 2022 AN - OPUS4-56757 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald T1 - Nanomaterial characterisation - The long way to standardisation N2 - In 1981 the OECD published the Test Guideline on Particle size and size distribution. This TG is still a valid document for the measurement of particles all over the world. When nanomaterials gained importance, ISO set up a technical commitee for Nanotechnologies in 2005 and the OECD followed this step in 2006 with the Working Party on Manufactured Nanomaterials. In the following years ISO and OECD published several documents about nanomaterials and the systematisation developed. In 2017 it was finally clear that nanomaterials need to be adressed in another way than chemicals and in 2020 ECHA revised the REACH-Annexes accordingly and included nanomaterials. Unfortunately there is a little problem with this: Only a few applicable test guidelines exit for the measurement of the nanomaterials. Several test guidelines date from 1981 and do not address nanomaterials. The logical next step for the OECD would be to publish a series of test guidelines which are indeed currently prepared and will be shown in this talk. Finally there is an additional need for the future of NM standardisation: Digitalisation. T2 - Bilateral workshop with Uni Bermingham CY - Online meeting DA - 10.03.2021 KW - Nano KW - Standardisation KW - Test guideline KW - OECD KW - Nanomaterial PY - 2021 AN - OPUS4-53822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Schmidt, Alexandra A1 - Bresch, Harald A1 - Kämpf, K. A1 - Bachmann, V. A1 - Peters, T. A1 - Kuhlbusch, T. T1 - Development of a specific OECD Test Guideline on Particle Size and Particle Size Distribution of Nanomaterials N2 - In this research project, a new OECD Test Guideline (TG) for the determination of “Particle Size and Particle Size Distributions of Nanomaterials” was developed as the existing OECD TG 110 is considered to be outdated in terms of applicable size range (not covering sizes <200 nm) and methods. By its scope with an applicable size range from 1 to 1000 nm the new Test Guideline (TG PSD) covers the whole nanoscale. The TG PSD is applicable for particulate and fibrous nanomaterials. The prescribed, pairwise measurement of fibre diameter and length in the TG PSD allows for the first time to differen-tiate fibres with regard to their size-dependent hazard properties. Measurement instructions for each included method were validated within two separated interlaboratory comparisons, as a distinction between near spherical particles and fibres when applying the methods has to be made. Besides information on content and structure of the TG PSD, this final report outlines essential steps, considerations and organisational aspects during the development of the TG. Insights into the selec-tion, preparation and prevalidation of test materials used in the interlaboratory comparison are given. Finally, main results of the interlaboratory comparisons and their impacts on the TG PSD are pre-sented. N2 - Im Rahmen des Forschungsprojekts wurde eine neue OECD-Prüfrichtlinie (TG) für die Bestimmung von Partikelgrößen und Partikelgrößenverteilungen von Nanomaterialien entwickelt, da die existie-rende OECD TG 110 zur Bestimmung von Partikelgrößen in Bezug auf den anwendbaren Größenbe-reich und die gegebenen Methoden veraltet ist bzw. den Nanometerbereich < 200 nm nicht abdeckt. Mit ihrem Anwendungsbereich von 1 bis 1000 nm deckt die neue Prüfrichtlinie (TG PSD) die gesamte Nanoskala ab. Die TG PSD ist für partikel- und faserförmige Nanomaterialien anwendbar. Durch die, in der TG PSD vorgeschriebene, paarweise Messung von Faserdurchmesser und -länge ermöglicht diese TG zum ersten Mal Fasern hinsichtlich ihrer größenabhängigen Gefahrstoffeigenschaften zu unter-scheiden. Die Messanweisungen aller enthaltenen Methoden wurden im Rahmen von zwei getrennten Ringversuchen validiert, da bei der Anwendung der Methoden eine Unterscheidung zwischen Parti-keln und Fasern gemacht werden muss. Neben Angaben zum Inhalt und Struktur der TG PSD, befasst sich der vorliegende Abschlussbericht mit den wesentlichen Schritten, Überlegungen und organisatorischen Aspekten bei der Entwicklung der Prüfrichtlinie. Darüber hinaus werden Einblicke in die Auswahl, Vorbereitung und Prävalidierung der im Ringversuch verwendeten Testmaterialien gegeben. Schließlich werden die wichtigsten Ergeb-nisse aus den Ringversuchen und ihre Auswirkungen auf die TG PSD vorgestellt. KW - Nano KW - OECD KW - Particle size distribution KW - Testguideline KW - Nanoparticle PY - 2021 VL - 2021 SP - 1 EP - 47 PB - German Environment Agency CY - Dessau AN - OPUS4-54021 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald A1 - Schmidt, Alexandra A1 - Kämpf, K. A1 - Bachmann, V. A1 - Peters, T. A1 - Kuhlbusch, T. T1 - Size matters! - Auf dem Weg zu einer neuen OECD Prüfrichtlinie zur Bestimmung der Partikelgröße und Anzahlgrößenverteilung von Nanomaterialien N2 - Vorstellung der Ergebnisse bei der Entwicklung einer neuen OECD Prüfrichtlinie zur Bestimmung der Partikelgröße und Anzahlgrößenverteilung von Nanomaterialien. Ergebnisse: Ideal sphärische Partikel sind gut und verlässlich mit vielen Methoden charakterisierbar. Reale (Nicht ideale) Materialien sind gut charakterisierbar, wenn eine gewisse Homogenität und Stabilität vorliegt. Stark inhomogene und stark agglomerierende Partikel liefern deutlich unterschiedliche Ergebnisse für verschiedene Methoden. Partikel mit geringen Größenunterschieden lassen sich mit allen Methoden gut charakterisieren. Partikel mit sehr deutlichen Größenunterschieden führen häufig zu einer Unterbewertung der kleineren Partikel. Vollautomatische Partikeldetektion bei elektronenmikroskopischen Aufnahmen ist z.Zt. noch stark fehleranfällig und kann daher nicht empfohlen werden. Es hat sich gezeigt, dass alle Methoden zur Bestimmung der Partikelgrößenverteilung Vor- und Nachteile haben. Es ist dringend zu empfehlen Größenverteilungen immer mit mindestens zwei unterschiedlichen Methoden zu bestimmen: Bildgebend und mit gute Anzahlstatistik. Verschiedene Durchmesser wurden in der TG-PSD mit einem Indexsystem versehen, welches zukünftig Verwechslungen zwischen unterschiedlichen Durchmessern vermeiden soll. Wird ein bestimmter Durchmesser benötigt (z.B. hydrodynamisch, aerodynamisch), muss die Methode passend gewählt werden. Eine Umrechnung von einem Durchmesser in einen anderen ist in der Regel fehlerbehaftet. Es wurde ein einheitliches Reporting-System in der TG-PSD eingeführt. T2 - Fachseminar des Umweltbundesamtes CY - Online meeting DA - 14.04.2021 KW - Nano KW - OECD KW - Prüfrichtlinie KW - Nanomaterial KW - BMU PY - 2021 AN - OPUS4-53823 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuhlbusch, T. A1 - Bresch, Harald A1 - Schmidt, Alexandra A1 - Kämpf, K. A1 - Bachmann, V. A1 - Peters, T. T1 - Size matters! - Auf dem Weg zu einer neuen OECD Prüfrichtlinie zur Bestimmung der Partikelgröße und Anzahlgrößenverteilung von Nanomaterialien _ Projektteil BAuA N2 - Vorstellung der Ergebnisse bei der Entwicklung einer neuen OECD Prüfrichtlinie zur Bestimmung der Partikelgröße und Anzahlgrößenverteilung von Nanomaterialien. (Projektteil Fasern.) Ergebnisse: Abweichungen zwischen SEM and TEM insbesondere bei langen Fasern Die Anwendung von TEM auf kurze Fasern < 5 µm beschränkt Für SEM wurde keine signifikante Abhängigkeit der Bestimmung der Faserdurchmesser von der Pixelgröße der Aufnahmen festgestellt Für TEM wurde eine Abhängigkeit der Bestimmung der Faserdurchmesser von der Pixelgröße festgestellt Der Einfluss der Bildauswertenden auf die Varianz der Ergebnisse ist klein im Vergleich zu der gesamten Varianz. Nanofasern können mit TEM und SEM bestimmt werden! T2 - Fachseminar des Umweltbundesamtes CY - Online meeting DA - 14.04.2021 KW - Nano KW - Nanofasern KW - OECD KW - Prüfrichtlinie KW - Nanomaterial PY - 2021 AN - OPUS4-53824 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -