TY - JOUR A1 - Syc, M. A1 - Simon, Franz-Georg A1 - Hyks, J. A1 - Braga, R. A1 - Biganzoli, L. A1 - Costa, G. A1 - Funari, V. A1 - Grosso, M. T1 - Metal recovery from incineration bottom ash: state-of-the-art and recent developments N2 - Municipal solid waste incineration (MSWI) is one of the leading technologies for municipal solid waste (MSW) treatment in Europe. Incineration bottom ash (IBA) is the main solid residue from MSWI, and its annual European production is about 20 million tons. The composition of IBA depends on the composition of the incinerated waste; therefore, it may contain significant amounts of ferrous and non-ferrous (NFe) metals as well as glass that can be recovered. Technologies for NFe metals recovery have emerged in IBA treatment since the 1990s and became common practice in many developed countries. Although the principles and used apparatus are nearly the same in all treatment trains, the differences in technological approaches to recovery of valuable components from IBA – with a special focus on NFe metals recovery – are summarized in this paper. KW - Bottom ash KW - Metal recovery KW - Waste-to-energy KW - Non-ferrous metals KW - Iron scrap PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-504927 SN - 0304-3894 VL - 393 SP - 122433 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-50492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lederer, J. A1 - Syc, M. A1 - Simon, Franz-Georg A1 - Quina, M. A1 - Hyks, J. A1 - Huber, F. A1 - Funari, V. A1 - Fellner, J. A1 - Braga, R. A1 - Bontempi, E. A1 - Bogush, A. A1 - Blasenbauer, D. T1 - What waste management can learn from the traditional mining sector: Towards an integrated assessment and reporting of anthropogenic resources N2 - Many organizations in Europe collect data and perform research on municipal solid waste and the secondary raw materials that can be produced from them through recycling, urban mining, or landfill mining.However, the information generated and presented thereby is often highly aggregated, while research activities are many a time isolated. Both reduce the usability of the data and information generated. In order to better structure the knowledge generation on secondary raw materials production from municipal solid waste, we suggest to learn from the traditional raw materials mining Industry how to perform an integrated assessment and reporting of anthropogenic resources. This is exemplarily shown for the case of the anthropogenic resource municipal solid waste incineration bottom ash and airpollution control residues. A network of expert institutions from countries throughout Europe was build up to compile the information on legal and technological aspects for the recovery of different secondary raw materials from these residues, including construction minerals, metals, and salts. We highlight in our article the strength of the combined knowledge of an expert network not only on legal and technological, but also local and site-specific aspects of the recovery of secondary raw materials. By doing so, we hope to kick-off a discussion for how to organize and implement a structure for a better management of knowledge on anthropogenic resources, in order to provide a sustainable supply of secondary raw materials for a greener and more circular economy. KW - Waste management KW - Resources KW - Mining PY - 2020 U6 - https://doi.org/10.1016/j.wasman.2020.05.054 VL - 113 SP - 154 EP - 156 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-50876 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -