TY - CONF A1 - Cohen, Zina A1 - Bonnerot, Olivier A1 - Schlanger, J. A1 - Hahn, Oliver A1 - Rabin, Ira T1 - Composition analysis of writing materials in Geniza fragments N2 - The Cairo Geniza is an “archive” discovered in the 19th century in Ben Ezra Synagogue in Fustat, a district in Old Cairo (Egypt), located south of the center of modern Cairo. The giant collection of mostly Jewish documents that vary in genres, languages and writing supports contains a large number of early medieval Hebrew manuscripts, mostly in fragmentary form. The larger part of the Cairo Geniza is stored today in the Cambridge University Library (CUL). The Geniza provides sources for the literary, linguistic, historical studies of the various aspects Jewish life. As the documents attest, at least two Jewish communities co-existed in Fustat up to 11th century: a so-called Babylonian and Palestinian. These communities had different leaders, different traditions and lived independently. The differences seem to manifest themselves also in the paleographical, codicological and some material properties of the manuscripts produced by each community. The aim of this project is to compare the inks used in the Jewish documents depending on different variables: support (paper, parchment), purpose of the manuscript (legal, private, religious), provenance of the scribe. For the determination of the inks type and composition we had to choose non-invasive, non-destructive and portable techniques to analyse the corpus directly in the CUL. The analyses were carried out with a mobile energy dispersive micro-X-ray spectrometer ArtTAX® (Bruker GmbH, Berlin, Germany), which consists of an air-cooled, low-power molybdenum tube, polycapillary X-ray optics (measuring spot size 70 µm in diameter), an electrothermally cooled Xflash detector, and a CCD camera for sample positioning (Bronk et al 2001, Hahn et al. 2010). All measurements are executed using a 30 W low-power Mo tube, 50 kV, 600 µA Mo tube, and with an acquisition time of 15 s (live time) to minimize the risk of damage (Fig. 1, 2). Fig. 1: XRF spectrometer probe above a manuscript fragment Fig. 2: Typical element profile of a XRF linescan The Dino Lite digital stereomicroscope (Fig. 3) features built-in LED illumination at 395 nm and 940 nm and a customized external white light source. During use, the microscope is fastened to a small tripod or mounted on a Plexiglas ring holder that incorporates a white light source. Fig. 3: Dino Lite digital stereomicroscope Fig. 4: Details of one fragment (T-S 16.124) observed with the Dino microscope (x20). On the left, when illuminated with NIR (Near-Infrared, 940 nm) light, the ink fades, indicating iron-gall ink. On the right, the image under NIR light does not change. It is carbon ink. On example of these studies is the manuscript T-S 16.124 (Cambridge University Library, Fig. 5) whom belongs to the third corpus. It is a deed, written in Hebrew, dated from 1328 (= 1017 CE) and witnessed by a very high number of people (6) comparing to the standard of similar documents (between 2 and 3), from at least two different Jewish communities in Fustat (trans congregational). The verso is written in Arabic (Bareket 1999). Fig. 5: Manuscript T-S 16.124 (Cambridge University Library) To compare the inks, we used the fingerprint model. This method relies on the determination of characteristic elemental compositions and represents the amount of a minor constituent relative to the main component, iron in iron gall ink (Malzer et al. 2004, Hahn et al. 2004, Rabin et al 2014). However, a calculation of a fingerprint based on XRF measurements is not possible in the case of carbon ink since carbon, its main component, cannot be detected with this technique. Fig. 6: Ink fingerprint T-S 16-124 (recto) normalized to iron (Fe) Conclusion We show that using reflectography and XRF analysis it is possible to sort the inks according to their type. In the case of the iron-gall inks, use of the ink fingerprint, i.e. amount of the vitriol components normalized to iron we can make direct comparisons of the ink composition. We would like also to stress that though the methods of material analysis listed above have been successfully employed in the field of cultural heritage and conservation including ancient and medieval manuscripts they have not yet been used to study fragments from the Cairo Genizah. Therefore, we believe that this research project is a pioneering study that will provide new insights into the history of Hebrew writing materials, their production techniques and materials and, thus, contribute new data to the field of Hebrew paleography. T2 - Konferenz DESY “Archäometrie und Denkmalpflege 2018” CY - Hamburg, Germany DA - 20.03.2018 KW - Ink KW - XRF Analysis KW - Manuscript PY - 2018 AN - OPUS4-46042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghigo, Tea A1 - Steger, Simon A1 - Bonnerot, Olivier A1 - Hahn, Oliver A1 - Buzi, P. A1 - Rabin, Ira T1 - Understanding the technological evolution of writing materials. Scientific systematic study of inks from Coptic manuscripts N2 - While studying the socio-geographic history of inks, division 4.5 of the BAM (Bundesanstalt für Materialforschung und Prüfung) together with the Centre for the Study of Manuscript Cultures in Hamburg has developed a protocol for ink analysis. It consists of a primary screening to determine the type of the ink and a subsequent in-depth analysis using several spectroscopic techniques: XRF, FTIR, and Raman. In most cases, we can obtain satisfactory results using a non-invasive protocol. However, mixed inks that contain no metals evade such a protocol. These inks constitute a heterogeneous group of media used especially in the Middle East and the Islamicate world since at least the 10th century; they are characterized by blending carbon ink and tannins, with or without the addition of vitriol. Our own research aims primarily at recreating a socio-geographic history of inks, parchment, and papyrus and includes the comparative analysis of the writing materials of the Dead Sea Scrolls, ink and papyrus in Ancient and Hellenistic Egypt, and inks in documents from various contemporary medieval communities in Fustat (first nucleus of Cairo). During many years of study, we concluded that the continuous production of Coptic manuscripts from late Antiquity to the Middle Ages offers a unique opportunity for historical study of the ink in a large geographic area. Thanks to the collaboration with the ERC project “PAThs” (www.paths.uniroma1.it), based at the University of Rome La Sapienza, and within the activities of a PhD research dedicated to this topic, we therefore created a new branch of our project focused entirely on the analysis of Coptic inks, pigments, and dyes. This pioneering systematic study of writing materials coming from a specific area and time frame (5th-10th century) aims not only at a better understanding of the complex Coptic multicultural and plurilingual society, but also and mainly at clarifying the links among the Coptic and other societies between the ancient and medieval eras. Finally, it will cast light on the history of the technological development of inks in the eastern world, from Antiquity to the middle ages. T2 - Konferenz: Scientific Methods in Cultural Heritage Research, Gordon Research Conference CY - Castelldefels, Spain DA - 22.07.2018 KW - Coptic KW - Ink KW - Manuscript PY - 2018 AN - OPUS4-46024 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonnerot, Olivier A1 - Del Mastro, G. A1 - Hammerstaedt, J. A1 - Mocella, V. A1 - Rabin, Ira T1 - XRF Ink analysis of selected fragments from the Herculaneum collection N2 - Hundreds of papyrus rolls, carbonized during the 79CE eruption of Mount Vesuvius, were discovered in 1754 at Herculaneum. Sophisticated mechanical methods for unrolling the best-preserved scrolls have been applied, with varying success. However, such processes have been abandoned, to prevent risk from irremediable damage or loss and to preserve the integrity of the extremely fragile rolls. Following the development of X-ray based non-invasive techniques, attempts to virtually unroll the scrolls were made. The most common ink in Antiquity was carbon-based, and the main element of carbonized papyrus is carbon, making these investigations difficult. However, some attempts with synchrotron X-ray phase-contrast tomography (XPCT) were successful. Recently, the identification of antique inks containing metals raised hope that if some of the inks contain metal the rolls can be virtually unrolled using conventional CT- technique. We investigated the inks of a selection of partially unrolled fragments stored at the Biblioteca Nazionale di Napoli with X-ray fluorescence in order to select the best candidates for tomography. Despite the many difficulties (analysis of several layers sticking together, letters barely visible, difficulty to separate contribution from the ink and from the papyrus, inhomogeneity of the support, fragility of the fragments…), encouraging results were found, with a number of inks from Greek fragments found to contain additions to the soot (Fe, Pb, Cu P). T2 - International Symposium on Archaeometry CY - Online meeting DA - 16.05.2022 KW - XRF KW - Ink KW - Herculaneum KW - Papyrus PY - 2022 AN - OPUS4-54892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -