TY - JOUR A1 - Bucar, K. A1 - Malet, J. A1 - Stabile, L. A1 - Pražnikar, J. A1 - Seeger, Stefan A1 - Žitnik, M. T1 - Statistics of a Sharp GP2Y Low-Cost Aerosol PM Sensor Output Signals N2 - In this work, we characterise the performance of a Sharp optical aerosol sensor model GP2Y1010AU0F. The sensor was exposed to different environments: to a clean room, to a controlled atmosphere with known aerosol size distribution and to the ambient atmosphere on a busy city street. During the exposure, the output waveforms of the sensor pulses were digitised, saved and a following offline analysis enabled us to study the behaviour of the sensor pulse-by-pulse. A linear response of the sensor on number concentration of the monosized dispersed PSL particles was shown together with an almost linear dependence on particle diameters in the 0.4 to 4 micrometer range. The gathered data about the sensor were used to predict its response to an ambient atmosphere, which was observed simultaneously with a calibrated optical particle counter. KW - Aerosol KW - Partikel KW - Aerosolsensor KW - Luftgüte KW - Umweltmessung PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-517466 SN - 1424-8220 VL - 20 IS - 23 SP - 6707 PB - MDPI CY - Basel, Schweiz AN - OPUS4-51746 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Seeger, Stefan T1 - Overview on the EMPIR Project "AEROMET" N2 - Overview on the ongoing EU EMPIR Project "AEROMET" Aerosol Metrology for Atmospheric Science and Air Quality, Overview on preliminary resuilts in Workpackages 3 "Calibration of MPSS and CPCs" and 4 "Quantifying airborne particle compositions in the field" T2 - Meeting des ISO TC24/SC4, Joint session of Working Groups 9 "Single particle light interaction methods" and 12 "Electrical mobility and number concentration analysis for aerosol particles" CY - Graz, Austria DA - 11.04.2019 KW - Ambient air pollution KW - EU EMPIR KW - Chemical analysis KW - Total reflection X-ray spectroscopy KW - Airborne Particles PY - 2019 AN - OPUS4-47820 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Herbig, B. A1 - Jörres, R. A. A1 - Schierl, R. A1 - Simon, M. A1 - Langner, Jeanette A1 - Seeger, Stefan A1 - Nowak, D. A1 - Karrasch, S. T1 - Psychological and cognitive effects of laser printer emissions: A controlled exposure study N2 - The possible impact of ultrafine particles from laser printers on human health is controversially discussed although there are persons reporting substantial symptoms in relation to these emissions. A randomized, single-blinded, cross-over experimental design with two exposure conditions (high-level and low-level exposure) was conducted with 23 healthy subjects, 14 subjects with mild asthma, and 15 persons reporting symptoms associated with laser printer emissions. To separate physiological and psychological effects, a secondary physiologically based categorization of susceptibility to particle effects was used. In line with results from physiological and biochemical assessments, we found no coherent, differential, or clinically relevant effects of different exposure conditions on subjective complaints and cognitive performance in terms of attention, short-term memory, and psychomotor performance. However, results regarding the psychological characteristics of participants and their situational perception confirm differences between the participants groups: Subjects reporting symptoms associated with laser printer emissions showed a higher psychological susceptibility for adverse reactions in line with previous results on persons with multiple chemical sensitivity or idiopathic environmental intolerance. In conclusion, acute psychological and cognitive effects of laser printer emissions were small and could be attributed only to different participant groups but not to differences in exposure conditions in terms of particle number concentrations. KW - Cognitive performance KW - Exposure KW - Idiopathic environmental intolerance KW - Laser printer emission KW - Multiple chemical sensitivity KW - Subjective complaints PY - 2018 U6 - https://doi.org/10.1111/ina.12429 SN - 1600-0668 SN - 0905-6947 VL - 28 IS - 1 SP - 112 EP - 124 PB - John Wiley & Sons, Inc. CY - 111 RIVER ST, HOBOKEN 07030-5774, NJ USA AN - OPUS4-43945 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Seeger, Stefan A1 - Brödner, Doris A1 - Jacobi, T. A1 - Rasch, Fabian A1 - Rothhardt, Monika A1 - Wilke, Olaf T1 - Emissions of fine and ultrafine particles and volatile organic compounds from different filament materials operated on a low-cost 3D printer T1 - Emissionen feiner und ultrafeiner Partikel sowie flüchtiger organischer Verbindungen beim Einsatz verschiedener Filamentmaterialien in einem „low-cost“-3D-Drucker N2 - 3D-printing or additive manufacturing has many promising and unique advantages. Especially low cost molten polymer Deposition Printers are increasingly populär in the private and educational sector. Their environmental friendliness can be questioned due to recently reported ultrafine particle and suspected VOC emissions, To further investigate 3D-printing as a potential indoor air pollution source we characterized fine and ultrafine particle emissions from a molten polymer deposition printer producing a 3D object with ten marketable polymer filament materials under controlled conditions in a test chamber. VOC emissions from the filaments have also been compared. Using a straightforward emission model time dependent and averaged particle emission rates were determined. The results indicate that under comparable conditions some filament materials produce mainly ultrafine particles up to an average rate of 1013 per minute. This value is in the upper ränge of typical indoor ultrafine particle sources (e.g. Smoking, frying, candle light, laser printer). The observed material-specific rates differ by five Orders of magnitude. Filament-specific gaseous emissions of organic compounds such as bisphenol A, styrene and others were also detected. Our results suggest a detailed evaluation of related risks and considering protective measures such as housing and filtering. N2 - 3D-Druck oder additive Herstellungsverfahren haben eine Menge vielversprechender und einzigartiger Vorteile. Insbesondere günstige 3D-Drucker für Polymere werden im privaten und ausbildenden Bereich zunehmend beliebter. Ihre Umweltfreundlichkeit kann aufgrund jüngst berichteter Emissionen ultrafeiner Partikel und vermuteter VOC-Emissionen infrage gestellt werden. Um 3D-Drucker für Polymere als mögliche Quelle von Innenraumluftverunreinigungen weiter zu untersuchen, charakterisierten wir die Emissionen feiner und ultrafeiner Partikel bei der Herstellung eines 3D-Objekts unter Verwendung zehn marktgängiger Polymerfilamente unter kontrollierten Bedingungen in einer Emissionsprüfkammer. Die VOC-Emissionen der verschiedenen Filamente wurden ebenfalls verglichen. Die zeitabhängigen und gemittelten Partikelemissionsraten wurden durch Anwendung eines einfachen Emissionsmodells bestimmt. Die Ergebnisse zeigen, dass unter vergleichbaren Bedingungen einige Filamente mit einer mittleren Rate von 10 KW - Emission KW - Ultrafine particles KW - VOC KW - 3D printer PY - 2018 SN - 0949-8036 SN - 0039-0771 VL - 78 IS - 3 SP - 79 EP - 87 PB - Springer-VDI-Verl. CY - Düsseldorf AN - OPUS4-44954 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Seeger, Stefan A1 - Osan, J. A1 - Czömpöly, O. A1 - Gross, A. A1 - Stosnach, H. A1 - Stabile, L. A1 - Ochsenkuehn-Petropoulou, M. A1 - Tsakanika, L. A1 - Lymperopoulou, T. A1 - Goddard, S. A1 - Fiebig, M. A1 - Gaie-Levrel, F. A1 - Kayser, Y. A1 - Beckhoff, B. T1 - Quantification of Element Mass Concentrations in Ambient Aerosols by Combination of Cascade Impactor Sampling and Mobile Total Reflection X-ray Fluorescence Spectroscopy N2 - Quantitative chemical analysis of airborne particulate matter (PM) is vital for the understanding of health effects in indoor and outdoor environments, as well as for enforcing EU air quality regulations. Typically, airborne particles are sampled over long time periods on filters, followed by lab-based analysis, e.g., with inductively coupled plasma mass spectrometry (ICP-MS). During the EURAMET EMPIR AEROMET project, cascade impactor aerosol sampling is combined for the first time with on-site total reflection X-ray fluorescence (TXRF) spectroscopy to develop a tool for quantifying particle element compositions within short time intervals and even on-site. This makes variations of aerosol chemistry observable with time resolution only a few hours and with good size resolution in the PM10 range. The study investigates the proof of principles of this methodological approach. Acrylic discs and silicon wafers are shown to be suitable impactor carriers with sufficiently smooth and clean surfaces, and a non-destructive elemental mass concentration measurement with a lower limit of detection around 10 pg/m3 could be achieved. We demonstrate the traceability of field TXRF measurements to a radiometrically calibrated TXRF reference, and the results from both analytical methods correspond satisfactorily. KW - TXRF KW - Reference method KW - Cascade impactor KW - Ambient aerosols KW - Particles KW - Air quality monitoring KW - Element mass concentration KW - Size resolved chemical composition KW - Time resolved chemical composition KW - ICP-MS PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-521860 UR - http://www.aerometproject.com/ SN - 2073-4433 VL - 12 IS - 3 SP - 309 EP - 337 PB - MDPI CY - Basel, Schweiz AN - OPUS4-52186 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Horender, S. A1 - Auderset, K. A1 - Quincey, P. A1 - Seeger, Stefan A1 - Skov, S. N. A1 - Dierschel, K. A1 - Smith, T. O.M. A1 - Williams, K. A1 - Aegerter, C. C. A1 - Kalbermatter, D. M. A1 - Gaie-Levrel, F. A1 - Vasilatou, K. T1 - Facility for production of ambient-like model aerosols (PALMA) inthe laboratory: application in the intercomparison of automated PMmonitors with the reference gravimetric method N2 - A new facility has been developed which allows for a stable and reproducible production of ambient-like model aerosols (PALMA) in the laboratory. The set-up consists of multiple aerosol generators, a custom-made flow tube homogeniser, isokinetic sampling probes, and a system to control aerosol temperature and humidity. Model aerosols containing elemental carbon, secondary organic matter from the ozonolysis of α-pinene, inorganic salts such as ammonium sulfate and ammonium nitrate, mineral dust particles,and water were generated under different environmental conditions and at different number and mass concentrations. The aerosol physical and chemical properties were characterised with an array of experimental methods, including scanning mobility particle sizing, ion chromatography, total reflection X-ray fluorescence spectroscopy and thermo-optical analysis. The facility is very versatile and can find applications in the calibration and performance characterisation of aerosol instruments monitoring ambient air. In this study, we performed, as proof of concept, an intercomparison of three different commercial PM (particulate matter) monitors (TEOM1405, DustTrak DRX 8533 and Fidas Frog) with the gravimetric reference method under three simulated environmental scenarios. The results are presented and compared to previous field studies. We believe that the laboratory-based method for simulating ambient aerosols presented here could provide in the future a useful alternative to time-consuming and expensive field campaigns, which are often required for instrument certification and calibration. KW - Model aerosols KW - Intercomparison KW - PM monitors KW - Aerosol gravimetry PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-521342 VL - 14 IS - 2 SP - 1225 EP - 1238 PB - Copernicus Publications AN - OPUS4-52134 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Asbach, C. A1 - Held, A. A1 - Kiendler-Scharr, A. A1 - Scheuch, G. A1 - Schmid, H.-J. A1 - Schmitt, S. A1 - Schumacher, S. A1 - Wehner, B. A1 - Weingartner, E. A1 - Weinzierl, B. A1 - Bresch, Harald A1 - Seeger, Stefan A1 - u.a., T1 - Positionspapier der Gesellschaft für Aerosolforschung zum Verständnis der Rolle von Aerosolpartikeln beim SARS-CoV-2 Infektionsgeschehen N2 - Dass Viren sich über Aerosolpartikel ausbreiten können, wurde bereits in vielen Studien gezeigt. Als Aerosol bezeichnet man ein Gemisch aus Luft mit darin verteilten festen oder flüssigen Partikeln. Ein Aerosol ist dabei immer dynamisch, da Partikel neugebildet, in oder mit der Luft transportiert und aus der Luft entfernt werden oder sich im luftgetragenen Zustand verändern. Zum Verständnis der Rolle von Aerosolpartikeln als Übertragungsweg von SARS-CoV-2 ist daher die Kenntnis der verschiedenen Prozesse in einem Aerosol von besonderer Bedeutung. Mit diesem Papier möchte die GAeF einen Beitrag dazu leisten, den momentan so häufig anzutreffenden Begriff „Aerosol“ sowie die relevanten Aerosolprozesse anschaulich darzustellen und zu erläutern. Dabei wird im Rahmen dieses Papiers nur auf die wesentlichen Grundlagen eingegangen. Für ein tiefergehendes Verständnis der teilweise komplexen Prozesse sei auf die angeführte Sekundärliteratur verwiesen. Das Papier fasst eine Vielzahl von Studien zur Entstehung von virenbeladenen Aerosolpartikeln sowie deren Ausbreitung zusammen. Darauf basierend kann festgestellt werden, dass ausgeatmete Aerosolpartikel auch bei der Corona-Pandemie eine prominente Rolle bei der Verbreitung der Viren spielen. Abschließend geht dieses Papier auf mögliche Maßnahmen zur Verringerung der Ausbreitung von Aerosolpartikeln ein. Die diskutierten Maßnahmen orientieren sich an der derzeitigen öffentlichen Diskussion und beinhalten entsprechend die folgenden Punkte: Lüften, Luftreiniger, Lüftungsanlagen und Masken. Es werden Hinweise zum richtigen und sinnvollen Einsatz dieser Maßnahmen gegeben. Aerosolpartikel haben Größen zwischen ca. 0,001 und mehreren 100 Mikrometern (und nicht wie in vielen Publikationen derzeit definiert < 5μm) und verteilen sich mit Luftströmungen relativ schnell, auch über größere Distanzen. Größere Aerosolpartikel sinken – abhängig von ihrer Größe und Dichte – zu Boden; kleine Aerosolpartikel können hingegen sehr lange in der Luft verbleiben (s. Kapitel 3). Jeder Mensch stößt durch die Atmung sowie beim Sprechen, Husten und Niesen flüssige Aerosolpartikel unterschiedlicher Größen aus (s. Kapitel 4). Ist eine Person mit einem Virus, wie z. B. SARS-CoV-2, infiziert, so können diese Aerosolpartikel Viren enthalten, die in die Luft gelangen und von anderen Personen eingeatmet werden können. SARS-CoV-2 hat eine Größe von 0,06 bis 0,14 Mikrometer, die exhalierten flüssigen Aerosolpartikel sind hingegen größer. Die flüssigen Aerosolpartikel können aber je nach Umgebungsbedingungen durch Verdunstung schrumpfen (s. Kapitel 3.3). Für den Partikeltransport und die Partikelabscheidung ist dabei jeweils die aktuelle Partikelgröße relevant. Das höchste Infektionsrisiko besteht in geschlossenen Innenräumen, da sich hierin Aerosolpartikel anreichern können. Insbesondere hier sind entsprechend Maßnahmen zu treffen, die eine Reduktion der Aerosolpartikelkonzentration ermöglichen. Vor dem Hintergrund der Aerosolwissenschaften ordnet die GAeF die aktuellen Maßnahmen zur Eindämmung der Pandemie wie folgt ein: • Prinzipiell gilt: Keine Maßnahme kann für sich alleine funktionieren! Das Zusammenspiel der verschiedensten Maßnahmen ist nach derzeitigem Wissensstand der beste Weg zur Minimierung des Infektionsrisikos. • Abstand halten ist wichtig, denn mit zunehmendem Abstand werden direkt ausgeatmete Viren verdünnt, und die Wahrscheinlichkeit sich anzustecken sinkt. Der vielfach vorgeschriebene Mindestabstand kann als Anhaltspunkt dienen, sollte aber insbesondere bei längeren Zusammenkünften und auch in Innenräumen mit verringerter Luftbewegung vergrößert und durch weitere Maßnahmen (s.u.) ergänzt werden. • Masken helfen, einen Teil der exhalierten Partikel (und Viren) zu filtern. Dadurch sinkt die Konzentration der exhalierten Partikel (und Viren) in einem Raum und damit das Infektionsrisiko. Hierbei ist zu beachten, dass die ausgeatmeten Aerosolpartikel durch anhaftende Feuchtigkeit relativ groß sind und somit auch von einfachen Masken effizient zurückgehalten werden können. Da diese Partikel aber mit längerer Verweilzeit in der Raumluft schrumpfen, sind einfache Mund-Nasen-Bedeckungen für den Selbstschutz weniger effizient. Hierfür sind Atemschutzmasken erforderlich, die auch für feine Partikel eine hohe Abscheidung zeigen, z. B. der Klassen FFP2, N95 oder KN95. Diese sind sowohl für den Selbst- als auch den Fremdschutz effizient, sofern sie über kein Ausatemventil verfügen. Masken mit Ausatemventil dienen hingegen nur dem Selbstschutz und widersprechen daher dem Solidaritätskonzept, dass Mitmenschen durch kollektives Maskentragen geschützt werden. • Gesichtsvisiere, die ohne zusätzliche Verwendung von Masken eingesetzt werden, sind hinsichtlich Aerosolpartikeln weitgehend nutzlos, da die Luft mit Partikeln (und Viren) ungefiltert um die Visiere herumströmt. Gesichtsvisiere werden im klinischen Alltag zusätzlich zu Masken getragen, um Tröpfcheninfektion über die Schleimhäute der Augen zu verhindern. Ebenfalls weitgehend unwirksam gegen die Aerosolverbreitung in Innenräumen sind mobile oder fest installierte Plexiglasbarrieren. Diese können nur kurzfristig die kleinräumige Ausbreitung eines Aerosols, z. B. im Kassenbereich eines Supermarkts, verhindern, bieten aber längerfristig keinen Schutz. Gesichtsvisiere und Plexiglasscheiben dienen im Wesentlichen als Spuck- und Spritzschutz gegenüber großen Tröpfchen. • Im Freien finden so gut wie keine Infektionen durch Aerosolpartikel statt. Allerdings können Tröpfcheninfektionen auftreten, insbesondere in Menschenansammlungen, wenn Mindestabstände nicht eingehalten und/oder keine Masken getragen werden. In geschlossenen Räumen ist Lüften unerlässlich, um die ausgeatmete Luft in einem Raum durch frische Luft von draußen zu ersetzen. Häufiges Stoß- und Querlüften sind dabei vergleichbar effektiv wie dauernd das Fenster vollständig geöffnet zu lassen. Aus energetischer Sicht ist Stoß- oder Querlüften insbesondere im Winter allerdings effizienter. CO2-Monitore können bei der Überwachung der Luftqualität in Innenräumen helfen. Sie zeigen an, wann gelüftet werden sollte und wann die Luft in einem Raum während des Lüftens ausreichend gewechselt ist. Sie können jedoch nur als Indikator verwendet werden und verhindern selbst bei Einhaltung der vorgeschlagenen CO2-Grenzkonzentrationen keine direkte Infektion durch unmittelbar benachbarte Personen. • Luftreiniger können einen sinnvollen Beitrag leisten, um die Partikel- und Virenkonzentration in einem Raum zu reduzieren. Bei der Beschaffung von Luftreinigern muss darauf geachtet werden, dass diese für den betrachteten Raum und die betrachtete Anwendung ausreichend dimensioniert sind, um die Partikel- und Virenlast signifikant zu verringern. Dem Luftdurchsatz des Gerätes kommt dabei eine größere Bedeutung zu, als der reinen Effizienz des Filters. Aus energetischen und Kostenerwägungen kann die Verwendung hocheffizienter Filter sogar kontraproduktiv sein. Fest verbaute Lüftungsanlagen können ebenso sinnvoll sein, sofern sie die Luft filtern, um die Partikel- und Virenlast in einem Raum zu verringern. Hierbei ist es zur Vermeidung von Infektionen sinnvoll, diese möglichst mit 100 % Frischluft zu betreiben. Aus Sicht der Gesellschaft für Aerosolforschung besteht erheblicher Forschungsbedarf insbesondere an den interdisziplinären Grenzen zu Forschungsfeldern der Epidemiologie, Infektiologie, Virologie, Lüftungstechnik und Strömungsmechanik. Die Durchführung gezielter Studien sollte kurzfristig mit speziellen Förder- und Forschungsprogrammen ermöglicht werden. Dieses Papier wurde von Mitgliedern der Gesellschaft für Aerosolforschung verfasst und wird von einer Vielzahl internationaler Aerosolexperten unterstützt (s. Kapitel 8). Neben der vorliegenden Version existiert auch eine englischsprachige Übersetzung (siehe www.info.gaef.de). Sämtliche Abbildungen in diesem Papier stehen unter folgendem Link zum kostenlosen Download bereit: https://www.info.gaef.de/positionspapier. Bei jeder Verwendung ist „Gesellschaft für Aerosolforschung e. V.“ als Quelle zu nennen. KW - Covid KW - Corona KW - GAeF KW - Aerosole KW - Aerosolforschung PY - 2021 UR - https://www.info.gaef.de/_files/ugd/fab12b_a5f114a183cf4f27ab8ac713e8a5b8ef.pdf SP - 1 EP - 48 PB - Gesellschaft für Aerosolforschung CY - Köln AN - OPUS4-53954 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Asbach, C. A1 - Held, A. A1 - Kiendler-Scharr, A. A1 - Scheuch, G. A1 - Schmid, H.-J. A1 - Schmitt, S. A1 - Schumacher, S. A1 - Wehner, B. A1 - Weingartner, E. A1 - Weinzierl, B. A1 - Bresch, Harald A1 - Seeger, Stefan A1 - u.a., T1 - Position paper of the Gesellschaft für Aerosolforschung on understanding the role of aerosol particles in SARS-CoV-2 infection N2 - Many studies have already shown that viruses can spread via aerosol particles. An aerosol is a mixture of air with solid or liquid particles dispersed in it. To understand the role of aerosol particles as a transmission path of SARS-CoV-2, knowledge of the different processes in an Aerosol is therefore of particular importance. With this paper, GAeF would like to contribute to a better understanding of the term “aerosol” and the relevant aerosol processes. In the context of this paper only the essential basics will be discussed. For a deeper understanding of the partly complex processes, please refer to the literature mentioned at the end of the paper. The paper summarises a large number of studies on the formation of virus-laden aerosol particles and their spread. Based on this, it can be concluded that exhaled aerosol particles may play a prominent role in the spread of viruses in the corona pandemic. Finally, this paper discusses possible measures to reduce the spread of aerosol particles. The measures discussed are based on the current public debate including ventilation, air purifiers, HVAC systems and masks. Advice is given on the correct and sensible use of these measures. An aerosol is always dynamic, as particles are newly formed, transported in or with the air, removed from the air or change in the airborne state. Aerosol particles have sizes between approx. 0.001 and several 100 micrometres (and not < 5 μm as currently defined in many publications) and spread relatively quickly with air currents, even over longer distances. Larger aerosol particles sink to the ground, depending on their size and density, while small aerosol particles can remain in the air for a very long time (see Section 3). Every person emits liquid aerosol particles of various sizes through breathing and when speaking, coughing and sneezing (see Section 4). If a person is infected with a virus, such as SARS-CoV-2, these aerosol particles can contain viruses that can be released into the air and inhaled by other people. SARS-CoV-2 has a size of 0.06 to 0.14 micrometres, but the exhaled liquid aerosol particles are larger. The liquid aerosol particles can shrink by evaporation, depending on the ambient conditions (see Section 3.3). Particle size is relevant for particle transport and particle separation. The highest risk of infection exists in closed indoor spaces, as aerosol particles can accumulate there. Here in particular, appropriate measures must be taken to reduce the concentration of aerosol particles (see Section 5). Against the background of aerosol science, the GAeF classifies the current measures to contain the pandemic as follows: • In principle, no measure can work on its own! According to the current state of knowledge, the interaction of the most varied measures is the best way to minimise the risk of infection. • Keeping distance is important, because with increasing distance, directly exhaled viruses are diluted and the probability of infection decreases. The often prescribed minimum distance can be used as a guide, but it should be increased and supplemented by other measures (see below), especially for longer meetings and also indoors with reduced air movement. • Masks help to filter some of the exhaled particles (and viruses). This reduces the concentration of exhaled particles (and viruses) in a room and thus the risk of infection. It should be noted here that the exhaled aerosol particles are relatively large due to adhering moisture and can therefore also be efficiently retained by simple masks. However, since these particles shrink with longer dwell time in the room air, simple mouth-nose masks are less efficient for self-protection. Respiratory masks are required for this purpose, which show a high degree of separation even for fine particles, e.g. of classes FFP2, N95 or KN95. These are efficient for both self-protection and protection of others unless they have an exhalation valve. Masks with an exhalation valve, on the other hand, are only for self-protection and therefore contradict the solidarity concept that fellow human beings are protected by collective mask wearing. Face shields which are used without additional masks are largely useless with regard t• aerosol particles, as the air with particles (and viruses) flows unfiltered around the shields. In everyday clinical practice, facial shields are worn in addition to masks to prevent droplet infection via the mucous membranes of the eyes. Mobile or permanently installed Plexiglas barriers are also largely ineffective against the spread of aerosols indoors. These can only prevent the smallscale spread of an aerosol in the short term, e.g. in the checkout area of a supermarket, but offer no protection in the longer term. Face shields and Plexiglas panels essentially serve as spit and splash protection against large droplets. • Outdoors, there are practically no infections caused by aerosol transmission. However, droplet infections can still occur, especially in crowds, if minimum distances are not observed and/or masks are not worn. In closed rooms, ventilation is essential to replace the exhaled air in a room with fresh air from outside. Frequent airing and cross-ventilation is just as effective as leaving the window open all the time. From an energy point of view, however, it is more efficient to ventilate the room, especially in winter. CO2 monitors can help to monitor indoor air quality. They indicate when it is necessary to ventilate and when the air in a room has been sufficiently changed during ventilation. However, they can only be used as an indicator and even if the proposed CO2 limit concentrations are met, they do not prevent direct infection by people in the immediate vicinity. • Air purifiers can make a useful contribution to reducing the concentration of particles and viruses in a room. When procuring air purifiers, care must be taken to ensure that they are adequately dimensioned for the room and application in question in order to significantly reduce the particle and virus load. The air throughput of the unit is more important than the pure efficiency of the filter. For energy and cost reasons, the use of highly efficient filters can even be counterproductive. Permanently installed ventilation systems can also be useful, provided they filter the air to reduce the particle and virus load in a room. To avoid infections, it is advisable to operate them with 100 % fresh air if possible. From the point of view of the Gesellschaft für Aerosolforschung, there is a considerable need for research, especially at the interdisciplinary borders to research fields of epidemiology, infectiology, virology, ventilation technology and fluid mechanics. The implementation of targeted studies should be made possible at short notice with special funding and research programmes. This paper was written originally in German by members of the Gesellschaft für Aerosolforschung and is supported by a large number of international aerosol experts. Both the English and German version as well as all images in the paper are available for free download at the following link: https://www.info.gaef.de/positionspapier. The “Gesellschaft für Aerosolforschung e. V.” must be named as the source, whenever an image is used. KW - COVID KW - SARS KW - GAeF KW - Aerosol KW - Corona PY - 2021 UR - https://www.info.gaef.de/_files/ugd/fab12b_d8d88393f90240cdbea63c88c09887ef.pdf U6 - https://doi.org/10.5281/zenodo.4350494 SP - 1 EP - 48 PB - Association for Aerosol Research CY - Köln AN - OPUS4-53955 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tang, Chi-Long A1 - Seeger, Stefan T1 - Measurement of sub-4 nm particle emission from FFF-3D printing with the TSI Nano Enhancer and the Airmodus Particle Size Magnifier N2 - The emission of ultrafine particles from small desktop Fused Filament Fabrication (FFF) 3D printers has been frequently investigated in the past years. However, the vast majority of FFF emission and exposure studies have not considered the possible occurrence of particles below the typical detection limit of Condensation Particle Counters and could have systematically underestimated the total particle emission as well as the related exposure risks. Therefore, we comparatively measured particle number concentrations and size distributions of sub-4 nm particles with two commercially available diethylene glycol-based instruments – the TSI 3757 Nano Enhancer and the Airmodus A10 Particle Size Magnifier. Both instruments were evaluated for their suitability of measuring FFF-3D printing emissions in the sub-4 nm size range while operated as a particle counter or as a particle size spectrometer. For particle counting, both instruments match best when the Airmodus system was adjusted to a cut-off of 1.5 nm. For size spectroscopy, both instruments show limitations due to either the fast dynamics or rather low levels of particle emissions from FFF-3D printing in this range. The effects are discussed in detail in this article. The findings could be used to implement sub-4 nm particle measurement in future emission or exposure studies, but also for the development of standard test protocols for FFF-3D printing emissions. KW - Air pollution KW - Ultrafine particles KW - Sub-4nm particles KW - FFF-3D printing KW - Emission testing PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-595952 SN - 0278-6826 SP - 1 EP - 13 PB - Taylor & Francis CY - London AN - OPUS4-59595 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tang, Chi-Long A1 - Seeger, Stefan A1 - Röllig, Mathias T1 - Improving the comparability of FFF-3D printing emission data by adjustment of the set extruder temperature N2 - Fused filament fabrication (FFF) is a material extrusion-based technique often used in desktop 3D printers. Polymeric filaments are melted and are extruded through a heated nozzle to form a 3D object in layers. The extruder temperature is therefore a key parameter for a successful print job but also one of the main emission driving factors as harmful pollutants (e.g., ultrafine particles) are formed by thermal polymer degradation. The awareness of potential health risks has increased the number of emission studies in the past years. However, studies usually refer their calculated emission data to the printer set extruder temperature for comparison purposes. In this study, we used a thermocouple and an infrared camera to measure the actual extruder temperature and found significant temperature deviations to the displayed set temperature among printer models. Our result shows that printing the same filament feedstocks with three different printer models and with identical printer set temperature resulted in a variation in particle emission of around two orders of magnitude. A temperature adjustment has reduced the variation to approx. one order of magnitude. Thus, it is necessary to refer the measured emission data to the actual extruder temperature as it poses a more accurate comparison parameter for evaluation of the indoor air quality in user scenarios or for health risk assessments. KW - Ultrafine particles KW - Infrared thermography KW - Thermocouple KW - Indoor air quality KW - FFF-3D printer PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-572842 VL - 18 SP - 100217 PB - Elsevier Ltd. CY - Amsterdam, Niederlande AN - OPUS4-57284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -