TY - CONF A1 - Steger, Simon A1 - Stege, H A1 - Bretz, S. A1 - Hahn, Oliver T1 - A complementary spectroscopic approach for the non invasive in situ identification of synthetic organic pigments in modern reverse paintings on glass N2 - This work addresses the identification of synthetic organic pigments (SOP) in ten modern reverse paintings on glass (1912-1946) by means of an in-situ multi-analytical approach. The combination of the complimentary properties of mobile Raman spectroscopy and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) enabled the detection of sixteen SOP even in complex mixtures with inorganic compounds and binders. For the β-naphthol pigments, both Raman and DRIFTS yield appropriate results. DRIFTS was the preferred method for the detection of synthetic alizarin (PR83). Its diagnostic band pattern even allows its detection in complex mixtures with mineral pigments, binders and fillers. Raman spectroscopy yielded distinctive spectra for the triaryl carbonium pigments (PG1, PV2, PR81) and the two-yellow azo SOP (PY3, PY12), whereas DRIFT spectra were affected by extensive band overlapping. This may also occur in Raman spectra, but in less problematic amounts. Fluorescence is the major problem with Raman and it significantly hampers the SOP spectra even with the 785 nm laser. On the one hand the big spot size of DRIFTS (10 mm) limits the technique to rather large sampling areas, whereas the use of a 50× objective for in-situ Raman measurements permits a focus on small spots and aggregated SOP flakes. Moreover, “environmental” factors like temperature changes, artificial light, limited space and vibrations when people pass by need to be considered for in-situ measurements in museums. Finally, the results show the experimental use of SOP in modern reverse glass paintings. Among several rare SOP (e.g. PB52, PR81), two of them (PG1, PV2) have never been reported before in any artwork. T2 - Technart2019 CY - Bruges, Belgium DA - 07.05.2019 KW - Synthetic organic pigments KW - Reverse glass painting KW - DRIFTS KW - Raman spectroscopy PY - 2019 AN - OPUS4-48009 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Steger, Simon A1 - Oesterle, D. A1 - Mayer, R. A1 - Hahn, Oliver A1 - Bretz, S. A1 - Geiger, G. T1 - First insights into Chinese reverse glass paintings gained by non invasive spectroscopic analysis N2 - A non-invasive methodological approach (X-ray fluorescence (XRF), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), Raman spectroscopy) has been carried out to identify the pigments and classify the binding media in two Chinese reverse glass paintings (The Archer, Yingying and Hongniang) from the late 19th and early 20th centuries. The results reveal a combined use of traditional Chinese and imported European materials. Several pigments like cinnabar, lead white, orpiment, carbon black and copper-arsenic green (probably emerald green) were found in both paintings; red lead, artificial ultramarine blue, Prussian blue and ochre appear in at least one of the paintings. The presence of portlandite (Ca(OH)2) along calcite (CaCO3) in the fine-grained, white backing layer of Yingying and Hongniang indicates the presence of limewash. In Chinese tradition, limewash was produced from clamshells, and was then sold as clamshell white. In contrast to the Japanese pigment, Chinese clamshell white was made of finely grounded shells, which were heated over a low fire. The residue (CaO) forms portlandite (Ca(OH)2) when water is continuously added. This water-rich mixture is applied on the painting. Portlandite reacts with atmospheric CO2 during drying and forms fine-grained calcite (CaCO3) [1,2]. The identification of emerald green (The Archer) suggests an earliest manufacturing date in the 1830s [3] and promotes the sinological dating of the painting. Drying oil was classified as a binding media in most areas of both paintings. However, the orange background of The Archer yielded prominent bands of both proteinaceous and fatty binder. T2 - Technart2019 CY - Bruges, Belgium DA - 07.05.2019 KW - Reverse glass painting KW - Raman spectroscopy KW - Non-invasive analysis PY - 2019 AN - OPUS4-48010 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -