TY - CONF A1 - McMahon, Dino Peter T1 - Exploring RNA viruses in edible insects: a case study using cockroaches, termites N2 - Our understanding of RNA viruses from edible insects is minimal at best, with studies largely focusing on model insect species and those associated with obvious signs of disease. This represents a considerable gap in understanding, given the growing role of insects as a source of food and feed, as well as the more general relevance of insects in agriculture and health. Illness due to entomophagy is rare but well documented, including fatal cases following the consumption of termites. Termites are eaten commonly in tropical Asia, Africa and South America, and are among the insects with the highest recorded fat content. There are many species of termites, with a wide range of diets and habitats centering around the consumption of wood and soil substrates. In this study, we report the results from a survey of more than 30 cockroach and termite transcriptomes, with the aim of understanding the diversity and evolution of RNA viruses as well as other potentially pathogenic organisms that are associated with this relevant but somewhat overlooked group of insects. We discuss our results in the context of the possible zoonotic risk posed by insects, as well as in the context of emerging viral and other disease threats that may face insects being reared at industrial scales. T2 - 4th International INSECTA 2018 Conference CY - Giessen, Germany DA - 05.09.2018 KW - Edible insects KW - Emerging KW - Virus KW - Pathogen KW - Termite KW - Cockroach PY - 2018 AN - OPUS4-47157 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - McMahon, Dino Peter T1 - The evolution of termite immunity N2 - The termites are a derived eusocial lineage of otherwise non-social cockroaches. Understanding the proximal and ultimate drivers of this major evolutionary transition represents an important goal in biology. One outstanding question concerns the evolution of termite immunity, which is thought to have undergone broad-sweeping adaptations in order to enhance group-level immune protection. To understand the evolutionary origins of termite immunity, we conducted qualitative and quantitative transcriptome analyses along a gradient of sociality. Firstly, we aimed to identify large-scale genetic shifts in immune traits linked to eusociality by comparing immune gene repertoires in solitary and subsocial cockroaches and across a range of eusocial termite lineages. Secondly, we compared the responses of a solitary cockroach, a subsocial wood-roach and different castes of a lower termite species to a non-specific immune challenge, in order to understand how sociality may have influenced the evolution of immune gene regulation. Firstly, we found that termites have a broadly representative repertoire of canonical immune genes as compared to gregarious cockroaches and subsocial wood-roaches. Secondly, with respect to immune challenge, the solitary cockroach and the subsocial wood-roach displayed a similarly comprehensive induced response, while the termite response was considerably dampened by comparison and strongly influenced by caste; with reproductives displaying a generally higher constitutive level of immune-gene expression compared to sterile castes. In summary we did not find termite eusociality to be associated with significant changes in immune gene diversity, but rather to be linked with significant modifications to the regulation of immunity following the origin of division of labour. T2 - BeGenDiv Annual Genomics Symposium 2018 CY - Berlin, Germany DA - 02.10.2018 KW - Evolution KW - Immunity KW - Termite PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-471581 AN - OPUS4-47158 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -