TY - CONF A1 - Richter, Anja A1 - Mezera, Marek A1 - Buchberger, G. A1 - Krüger, Jörg A1 - Bonse, Jörn A1 - Heitz, J. A1 - Schwibbert, Karin T1 - Laser-processing – a tool to direct biofilm formation N2 - Using nanofiber-like cell appendages, secreted proteins and sugars, bacteria can establish initial surface contact followed by irreversible adhesion and the formation of multicellular biofilms, often with enhanced resistance towards antimicrobial treatment and established cleaning procedures. On e.g. medical implants, in water supply networks or food-processing industry, biofilms can be a fertile source of bacterial pathogens and are repeatedly associated with persisting, nosocomial and foodborne infections. Nowadays, the emergence of resistances because of extensive usage of antibiotics and biocides in medicine, agriculture and private households have become one of the most important medical challenges with considerable economic consequences. In addition, aggravated biofilm eradication and prolonged cell-surface interaction can lead to increased biodeterioration and undesired modification of industrial and medical surface materials. Various strategies are currently developed, tested, and improved to realize anti-bacterial surface properties through surface functionalization steps avoiding antibiotics. In this study, contact-less and aseptic large-area short or ultrashort laser processing is employed to generate different surface structures in the nanometer- to micrometer-scale on technical materials such as titanium-alloy and polyethylene terephthalate (PET). The laser processed surfaces were subjected to bacterial colonization studies with Escherichia coli test strains and analyzed with reflected-light and epi-fluorescence microscopy. Depending on the investigated surfaces, different bacterial adhesion patterns were found, ranging from bacterial-repellent to bacterial-attractant effects. The results suggest an influence of size, shape and cell appendages of the bacteria and – above all – the laser-processed nanostructure of the surface itself, emphasizing the potential of laser-processing as a versatile tool to control bacterial surface adhesion. T2 - International Biodeterioration & Biodegradation Symposium 2021 CY - Online meeting DA - 06.09.2021 KW - Bacterial adhesion KW - Biofilm formation KW - Laser-induced periodic surface structueres (LIPPS) KW - Laser processing PY - 2021 UR - https://www.ibbs18.org/programme AN - OPUS4-53223 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -